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The growing popularity of open-source processors, such as RISC-V, is reshaping the landscape of System on Chips (SoCs). RISC-V has
gained widespread popularity due to its capacity for adaptable expansion of its Instruction Set Architecture (ISA), catering to diverse
application needs. This study investigates an ISA extension focusing on memory load and store operations, which are crucial for many
applications in embedded systems, including Deep Neural Networks (DNNs). Continuous memory interaction within DNNs leads to
increased power consumption and latency. We explored a new instruction for doubling memory access, achieving a reduction of around
50% in clock cycles and approximately 30% in power consumption during memory load and store operations while incurring only a
minimal area overhead of approximately 4% and is validated on a modified RISC-V platform. This study also suggests additional ISA
extensions, a work currently in progress, to facilitate support for the bfloat16 data type on RISC-V architecture to reduce quantisation
losses in resource-constrained devices.

CCS Concepts: • Computer systems organization → System on a chip; • Hardware→ Hardware accelerators.

Additional Key Words and Phrases: RISC-V, Deep Neural Networks, Memory, Accelerators, Edge-AI

ACM Reference Format:
Ajay Kumar M, Vineet Kumar, Deepu John, and Shreejith Shanker. 2024. Implementation and analysis of custom instructions on
RISC-V for Edge-AI applications. In 14th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

(HEART ’24), June 19–21, 2024, Porto, Portugal. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3665283.3665342

1 INTRODUCTION

DNNs have demonstrated notable success in identifying and deciphering patterns across various applications, including
image and video processing. Despite their effectiveness, DNNs face limitations in computational complexity, power
consumption, and resource demands, making them less explored in contexts with low-power use cases, such as Internet
of Things (IoT) sensors and extreme-edge devices. These applications often operate under stringent energy and resource
constraints. The current body of literature reflects a growing focus on edge AI. Initially designed to analyse 2D data,
DNNs were primarily employed in tasks such as image classification and segmentation. Training a DNN demands a
substantial amount of data, and inherently, these networks are characterized by their vast scale, containing thousands
& millions of parameters [1]
As the deployment of IoT sensors is rapidly expanding, with billions of interconnected devices, the imperative is clear:
the computational processing must be decentralized to the edge. Some notable works towards bringing the DNN
computation to edge are [4], [12], [2]. In the context of deploying computation to the edge, addressing challenges such
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as cloud connectivity, privacy concerns, and latency is paramount. However, this deployment introduces additional
complexities, particularly regarding the availability of essential power and hardware resources. Numerous efforts
have been aimed at enhancing performance by addressing the memory bottleneck, whether through constraining
memory access, implementing on-chip memories, or employing memories closer to the accelerator. Yet, these strategies
necessitate trade-offs, such as increased area due to on-chip buffer implementation or by reducing accelerator flexibility
to optimize memory access patterns. In [9], the authors investigate the memory requirements of CNNs, analyzing
both on-chip memory size and off-chip memory bandwidth to understand their impact on accelerator design, and
propose heuristic design points to optimize for select dataflow scenarios. NNAMC is a dynamic random access memory
(DRAM) memory controller tailored for neural network accelerators. It optimizes memory access performance by
dynamically adjusting address mapping schemes based on memory access characteristics [11]. Researchers have
also explored compute-in-memory approaches [7], [13] and have deliberated on the challenges associated with such
techniques [6]. Novel microarchitectural designs for implementing multilayer DNNs in crossbar arrays of analog
memories are introduced in [3], with improvements in circuit efficiency showcased through source follower-based
readout, array segmentation, and transmit-by-duration techniques. A comprehensive review of state-of-the-art tools
and techniques for efficient edge inference is provided in [8], with a focus on four research directions: novel DL
architecture and algorithm design, optimization of existing DL methods, algorithm-hardware codesign development,
and efficient accelerator design for DL deployment. However, to the best of our knowledge, all existing works primarily
approach the problem from the accelerator’s perspective. This study aims to address computational power and latency
requirements by reframing the problem as a generic memory access limitation, rather than focusing solely on optimizing
the accelerator for incoming data traffic.
Load and store operations are fundamental to any computation, including DNNs. As detailed in subsequent sections,
we explore an extension to the baseline RISC-V architecture. This extension enables loading double words (and, by
extension, 8 bytes and 4 half-words) from adjacent memory locations in a 32-bit RISC-V system. We validate our
approach through a C example executed on a modified RISC-V platform within the Codasip framework [5]. We also
briefly discuss a forthcoming aspect of our research, which involves incorporating support for the bfloat16 data type.
However, our current focus remains on elucidating the memory access-related extension and presenting its preliminary
findings, as this aspect of our work is still ongoing. The initial results demonstrate promising advantages associated
with this ISA extension. To the best of our knowledge, no implementation of 64-bit load/store on 32-bit RISC-V has
been done before.

2 OBJECTIVES

The objectives of this research are as follows:

(1) to demonstrate the advantages of running DNN models on RISC-V by reducing memory access through the
proposed ISA extension for load and store operations.

(2) to address the compiler updates necessary to harness the potential of the custom ISA extension concerning
memory accesses.

(3) to conduct performance comparisons between this extension and baseline RISC-V core.
(4) to introduce an ISA extension to support bfloat16 data type on RISC-V.
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3 BACKGROUNDWORK

This study uses a feature-reduced, 4-stage pipeline RISC-V core, provided by Codasip [5]. Support for On-Chip Debugging
(OCD) was integrated into this core to facilitate JTAG access. Subsequently, it was interfaced with program and data
memory and compiled in the Codasip framework to generate FPGA-compatible HDL files. These HDL models were
synthesized for implementation on a Digilent Nexys-4 FPGA platform. Finally, the core underwent testing by executing
a modified MNIST CNN C code featuring two convolution layers. This successful execution provided assurance of a
streamlined workflow, enabling the initiation of ISA extension development.

4 LOAD STORE DOUBLE

RV32I is a load-store architecture with loads encoded in the I-type format, and stores in the S-type format [10]. The
implementation of the load double and store double instructions begins by grouping the 32 existing RISC-V 32-bit
general-purpose registers (GPR) into pairs. These pairs are denoted as GPR0_GPR1, GPR2_GPR3, ..., GPR30_GPR31,
effectively providing us with sixteen 64-bit registers.
The Codasip framework facilitates the inclusion of compiler hints, enabling the seamless integration of extended
instructions into the compilation process. This feature ensures that the SDK and other software components can
be updated accordingly to support the extended instruction set. Such a capability underscores the advantages of
software-hardware co-design.
A significant aspect of this research is the focus on compiler updates, which plays a crucial role. It is imperative not only
to ensure accurate compiler updates but also to verify and adjust them to optimize user code to harness the benefits of
the new ISA extension. For instance, the updated compiler must be capable of identifying and substituting memory
accesses in a manner that ensures their consecutive placement, enabling the utilization of the load double and store
double functionalities of the underlying hardware. Failure to incorporate these specific compiler modifications results
in either the omission or partial utilization of the custom ISA for memory accesses. At present, our demonstration of
ISA utilization is limited to manually coding consecutive accesses in C. We are engaged in identifying the necessary
modifications to extend this optimization to generic user C code. The memory stage of the pipeline forwards the load
addresses via the bus interface and retrieves corresponding data, which are then written back to the 32-bit register pairs.
Following the implementation of 64-bit register aliasing, the subsequent step involves updating the pipeline stages.
Specifically, the decoder undergoes modifications to accommodate the newly introduced opcodes associated with load
double and store double operations. Upon encountering the load double opcode, the decoder activates both the ALU
and load unit within the Execute stage while causing a pipeline stall, necessitating the computation of the subsequent
memory load address. This address is determined by adding the base address specified in the rs1 field of the instruction
with an offset of 0x4 (or 0x1, 0x2 for byte and half-word, respectively).
This process effectively conserves a few cycles that would have otherwise been expended on additional load instructions.
Additionally, it optimizes program memory usage by consolidating multiple load instructions into one, thereby reducing
the number of load operations from two to one (and correspondingly from 8 or 4 for byte or half-word loads, respectively).
Likewise, in the case of store operations, data is retrieved from the register pairs and then deposited into the memory
address indicated by the rs1 field of the S-type instruction. The initial value from the register pair is stored at the
specified rs1 address, while the subsequent value is stored at an address incremented by 0x4 (or by 0x1 and 0x2 for byte
and half-word data, respectively). The assembly format for the new custom instructions is shown in listing 1
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Listing 1. Assembly format of the custom load double and store double instructions

1 ; Load double assembly instruction format
2 ldd rd, imm12(rs1)
3 ; Here, rd is a 64-bit register realised using a 32-bit register pair
4 ; imm12 is the sign-extended immediate value in the I-type instruction format
5 ; rs1 is the base address
6 ; This instruction loads values into rd from memory addresses (rs1+imm12) & (rs1+imm12+0x4)
7

8 ; Store double assembly instruction format
9 std rs2, imm12(rs1)
10 ; Here, rs2 is a 64-bit register realised using a 32-bit register pair
11 ; imm12 is the sign-extended immediate value in the S-type instruction format
12 ; rs1 is the base address
13 ; This instruction stores values from rs2 into memory addresses (rs1+imm12) & (rs1+imm12+0x4)

5 EXPERIMENTAL SETUP

Both the baseline and extended RISC-V subsystems undergo compilation using the Codasip toolchain, which auto-
matically updates compiler support. LLVM serves as the compiler in this scenario. A simple C test is authored, which
involves declaring a 2D array, reading its elements, and storing them in another array. This test aims to verify whether
the compiler recognizes and utilizes the extended instruction when deemed necessary. Compilation is conducted with
O3 optimization enabled. The selection of a 2D array is deliberate to simulate image-like behavior, aligning with the
ultimate objective of benchmarking an image classification DNN.
The exercise is replicated on both the baseline and the extended RISC systems, with the baseline RISC system being
slightly different from the RISC-V system, supporting a lesser number of instructions. Both systems, referred to as 𝜇RISC
and 𝜇RISC-V, have lower instruction count support. The 𝜇RISC is a basic architecture intended primarily to include only
the essential instructions required for generating a C compiler. The 𝜇RISC-V incorporates the entire RV32IM instruction
set, excluding On-Chip-Debugger support.

6 EXPERIMENTAL RESULTS

The C test undergoes compilation, and the resulting executable is subjected to profiling within the Codasip framework.
The assembly code highlighted in Figure 1 and 2 illustrate the substitution of regular load and store instructions with
custom load and store instructions. The profiling outcomes are depicted in table 2 and 3, showcasing a 47.6% and
49.5% decrease in the number of clock cycles required for the identical test case, accompanied by a 50% reduction in
the number of instructions executed. Additionally, it demonstrates approximately an 11% increase in area overhead
in terms of required logical and sequential elements, although these are optimized during synthesis, as depicted in
Table 1 for Xilinx XC7A100TCSG-2L FPGA. As anticipated, there is a slight area overhead of approximately 4% due
to additional FPGA hardware needed for the custom instruction. However, this overhead is a negligible trade-off for
achieving approximately 50% reduction in instruction count and clock cycles.

7 WORK IN PROGRESS

An important aspect to consider is that the adoption of the proposed extension necessitates compiler updates, which
can be a nuanced process. We have encountered challenges wherein certain codes fail to recognize our instructions
or only partially utilize them. Efforts are currently underway to address these issues, and we anticipate conducting
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Fig. 1. Assembly code showing load and store instructions
Fig. 2. Assembly code showing load double and store double
instructions

Table 1. FPGA resource utilization comparison between baseline 𝜇RISC and extended architecture

Baseline 𝜇RISC 𝜇RISC with extension Overhead (%)

LUT 1540 1605 4.22
MUX 309 213 -31.06
FF 1413 1414 0.07
DSP 3 3 0.00

Note: The synthesis results are only displayed for 𝜇RISC and not
𝜇RISC-V as that synthesis is still underway

Table 2. Performance metrics comparison between baseline
𝜇RISC-V and extended architecture

Base 𝜇RISC-V 𝜇RISC-V with extension Change(%)
LIC 1.3597 × 106 0.6777 × 106 50.15
SIC 1.3599 × 106 0.6777 × 106 50.16
CC 4.1862 × 106 2.1930 × 106 47.61
HW 0.1194 × 106 0.1327 × 106 -11.15
TP 0.4206 × 1012 0.2957 × 1012 29.70

PC/C 0.1004 × 106 0.1348 × 106 -34.26
LIC = Load Instruction Count; SIC = Store Instruction Count; CC
= Cycle Count; HW = Hardware area; TP = Total Power; PC/C =
Power Consumption per Cycle

Table 3. Performance metrics comparison between baseline
𝜇RISC and extended architecture

Base 𝜇RISC 𝜇RISC with extension Change(%)
LIC 1.3561 × 106 0.6777 × 106 50.02
SIC 1.3561 × 106 0.6777 × 106 50.02
CC 4.0750 × 106 2.0545 × 106 49.58
HW 0.0266 × 106 0.0296 × 106 -11.27
TP 0.1288 × 1012 0.1126 × 1012 12.57

PC/C 0.0316 × 106 0.0548 × 106 -73.41
LIC = Load Instruction Count; SIC = Store Instruction Count; CC
= Cycle Count; HW = Hardware area; TP = Total Power; PC/C =
Power Consumption per Cycle

application benchmarks in the near future to validate the efficacy of our approach. In our upcoming research, we
aim to implement support for the bfloat16 data type on RISC-V architecture, following its introduction by Google.
bfloat16 offers a promising blend of precision and storage efficiency, striking a balance between float16 and float32. This
reduced precision is particularly advantageous for DNN training, as it introduces beneficial noise, thereby enhancing
the robustness and reliability of trained models. Our investigation aims to capitalize on these benefits to advance AI
computing on RISC-V-based edge devices.
We will evaluate two approaches to achieve this goal:
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(1) Updating the compiler to include support for bfloat16 and subsequently designing a specialized hardware
computation engine capable of processing this data type.

(2) Retaining the compiler without modifications and delegating the handling of regular data types to hardware,
from conversion to computation. This will be facilitated through an ISA extension, offering users the flexibility
to choose their preferred data type.

8 CONCLUSION

The custom instruction proposed in this research yields a notable reduction in both clock cycles and instruction count,
presenting considerable advantages for executing AI workloads, particularly in edge computing scenarios characterized
by strict power and resource constraints. While this work introduces the load double word extension, ongoing efforts
are directed towards further extensions encompassing load double half word and load double bytes. Such extensions
hold particular significance as many edge AI workloads employ quantized models that may not exclusively utilize 32-bit
data. Additionally, there are intentions to expand the project to accommodate non-consecutive loads. This expansion
will involve dividing the immediate field of the I-type RISC-V instruction into two segments, enabling distinct address
offsets. Implementing this modification will necessitate updates to the compiler, the decoder and the execution unit.
Moreover, the proposed extension is versatile and can be seamlessly integrated with other custom ISA extensions,
such as the Multiply-Accumulate (MAC) operation, to unlock additional benefits. In summary, power consumption is a
critical concern in embedded AI, and this study aims to address it by exploring a custom instruction for memory load
and store operations in RISC-V, thereby reducing memory accesses and clock cycles. Additionally, we advocate for the
incorporation of the bfloat16 data type, which is gaining traction for its ability to enhance model accuracy without
significantly increasing resource requirements or computational complexity.
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