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Abstract—Complex electronic control unit (ECU) architec-
tures, software models and in-vehicle networks are consistently
improving safety and comfort functions in modern vehicles.
However, the extended functionality and increased connectivity
introduce new security risks and vulnerabilities that can be
exploited on legacy automotive networks such as the controller
area network (CAN). With the rising complexity of vehicular
systems and attack vectors, the need for a flexible hardware-in-
the-loop (HIL) test fixture that can inject attacks and validate the
performance of countermeasures in near-real-world conditions in
real time is vital. This paper presents an FPGA-based HIL frame-
work tailored towards validating network security approaches
(IDS, IPS) and smart integration strategies of such capabilities
for an automotive CAN bus. FAV-NSS replicates an actual
vehicular system environment with functional ECUs and network
infrastructure on an FPGA, allowing functional validation of
IDS/IPS algorithms, accelerator designs and integration schemes
(software task on ECU, dedicated accelerator). Software APIs on
the attached host machine control and configure ECUs, automate
test case execution and log signals from the ECUs and the
‘virtual’ CAN bus during runtime. To show the efficacy of FAV-
NSS, we evaluate an IDS accelerator integration problem, both as
a traditional coupled accelerator (to the ECU), and secondly close
to the CAN controller (mimicking an extended CAN controller).
We show that the latter strategy can be fully validated by
our framework, which would otherwise require integration of
specialised CAN modules into otherwise standard HIL fixtures
with ability to instrument internal signals for characterising
timing performance. The tests demonstrate a promising latency
reduction of 6.3× when compared to the traditional coupled
accelerator. Our case study demonstrates the potential of FAV-
NSS for accelerating the optimisation, integration and verification
of smart ECUs and communication controllers in current and
future vehicular systems.

Index Terms—Hardware in the Loop, Controller Area Net-
work, Intrusion Detection System, Machine Learning, Field
Programmable Gate Arrays, Quantised Neural Nets

I. INTRODUCTION

Recent years have seen rapid adoption of intelligent systems
in production vehicles that improve the safety, reliability, and
comfort of users [1]. The advancements are enabled by a
number of networked electronic control units (ECUs) that
run software tasks to observe, monitor, and control different
sensors and actuators in real-time. Typically, over 100 ECUs
are present in modern cars [2] that exchange information over
robust communication protocols such as local interconnect
network (LIN), FlexRay, controller area network (CAN), and
Automotive Ethernet. Despite numerous security issues, CAN

continues to be the most widely used network protocol for
critical and non-critical functions in modern vehicles.

Development of automotive functions are typically done
in silos and integrated into test fixtures for validating their
functionality prior to deployment in real systems. Hardware-
in-loop (HIL) simulation/emulation has been used for real-
time testing of embedded systems, especially in the automotive
and aerospace areas [3], [4]. Multiple research has shown that
field programmable gate arrays (FPGAs) are optimal target
platforms for a flexible HIL setup. FPGA-based HIL sys-
tems allow rapid exploration and validation of design choices
through real-time emulation and reprogramming, rather than
requiring expensive rewiring and re-validation with fixed
platform-based HIL models. HIL setups are also adopted in
automotive systems development, primarily for functional-
level and system-level verification of new features. With
increasing connectivity in automotive systems, system and net-
work security verifications are increasingly gaining attention
in the automotive domain. Unlike functional and system-level
tests, an HIL system for in-vehicle safety research should be
capable of rapidly exploring design solutions and verifying
the constructed safety methods for myriad network conditions
and ECU functions. It should provide means for injecting
(new) attack features and real-time recording and inspection,
allowing end-to-end verification of security countermeasures
and quantify their impacts on key ECU functions. Techniques
such as quantised neural networks based IDS [5] provide
unique integration strategies for security measures, moving
them closer to the network controller, as opposed to tradi-
tional ECU-coupled and software IDS solutions. Validating the
integration of these functions (in software/hardware) would
require extensive modifications in a fixed HIL environment,
and hence, impose restrictions on investigating novel security
schemes, integration strategies and their validation in vehicular
networks.

This paper presents a HIL framework for testing and val-
idating network security schemes (such as IDSs & IPSs) for
CAN-based vehicular systems, with an FPGA as the heart of
the framework. Our CAN testbed uses an Artix-7 FPGA to
emulate multiple ECUs that are interconnected with a ‘virtual’
CAN bus on the logic, with the ability to expand to multi-
FPGA setups for scalability. The testbed can be controlled
and configured through both a GUI-based or an API-based
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interface, and supports injection of attack vectors (including
preconfigured ones such as DoS), replay of captured sequences
(for replicating datasets), programming ECUs, and real-time
acquisition and monitoring and analysis of CAN bus data and
ECU status signals. To demonstrate the potential of the plat-
form, we investigate two case studies which present different
IDS integration pathways – first, as a coupled accelerator to
the ECU and second, as an integration closer to the CAN
controller of the ECU. In both cases, we use an identical
quantised neural network as the IDS to show that the platform
uniquely provides the ability to evaluate the difference in
integration strategies, in terms of detection performance and
latency, in addition to the standard functional verification and
end-to-end validation. The major contributions of this paper
are as follows:

• An FPGA-based hardware-in-loop testbed with config-
urable parameters for accelerating validation and testing
of CAN IDS/IPS at both the ECU and networked function
levels, while capturing ECU/function-level performance
impacts due to IDS/IPS.

• Case study demonstrates the adaptability of the HIL plat-
form to two different integration strategies for intrusion
detection systems: the conventional coupled accelerator
and the novel IDS-enabled CAN controller. We show that
either integration can be tested and qualified against a
range of attack vectors that can be injected under software
control (GUI/API) on FAV-NSS.

• Additionally, the timing characterisation of the integration
strategy on FAV-NSS shows that IDS integrated close to
a CAN controller reduces the detection latency by 6.3×,
allowing line-rate detection on most CAN networks.

The rest of this paper is organized as follows. Section II
provides background and related research works on CAN
security and mitigation schemes as well as on hardware-
in-loop testbed and components; Section III describes the
system architecture and implementation of the hardware-in-
the-loop testbed, the software framework and the IDS model
used for the case study. Section IV outlines the different
integration methods for the IDS, with section V capturing the
observed results from testing across different configured and
programmable attacks, as well as the latency gains enabled by
the different integration strategies. Finally, we conclude the
paper in section VI.

II. BACKGROUND AND RELATED WORKS

A. CAN security threats & mitigations

CAN provides numerous advantages over competing pro-
tocols such as resistance to electromagnetic interference (due
to twisted wire transmission), integrated arbitration and prior-
ities, and its linear broadcast bus topology leading to lower
overall cabling weight and cost. However, due to increased
connectivity to the external systems, some of these built-in
properties can be exploited for network intrusion attacks, af-
fecting the safety and reliability of the systems interconnected
by CAN [6]. Vulnerabilities in the CAN protocol have been
thoroughly evaluated in the research literature [7]–[9]. The
broadcast nature allows all ECUs to receive communication
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Fig. 1. Figure shows a compromised ECU using an active DoS attack to
block critical message communication. In the figure, the engine control ECU
fails to receive a message from the body control module due to the active
DoS injections on the bus.

from any known/unknown/infected ECU on the network, pas-
sively sniff data on the network to identify/record unique
information or reuse the sensor/actuator commands for replay
attacks. The built-in arbitration scheme could be exploited
for targeted attacks or simple flooding and DoS attacks,
completely crippling the network. In [10], the authors were
the first to formulate a theoretical risk level corresponding
to the level of attacks that could be injected into vehicles.
Further in [11], [12], the authors showed that it was possible to
inject information frames into the vehicle control bus to bypass
driver and system control to maliciously take over critical
functions in the vehicle. In [13], authors proposed a targeted
DoS attack method on the CAN bus, which can isolate specific
ECUs on the network and prevent them from communicating.
While many attack vectors could exploit these vulnerabilities
in CAN, the most widely reported ones in the literature are
DoS, fuzzing and targeted spoofing attacks [8]. DoS attacks can
be launched on the CAN bus through bus flooding, exploiting
the error propagation feature or by preventing the sleep-
wake sequence causing the ECUs to stay in sleep mode. Bus
flooding attack, shown in Fig. 1, is the most common DoS
attack where the malicious ECU floods the bus with high-
priority messages, preventing all other ECUs from using the
bus. Error propagation attacks are more sophisticated, where
the error handling scheme in CAN is exploited by intentionally
causing bit stuffing errors, which triggers listening ECUs
to send error frames, thus stifling the bus. Fuzzing attacks
use random payloads to disrupt normal functionality or to
identify vulnerabilities in a specific ECU by observing their
response to the payload. Targeted spoofing attacks use specific
payloads aimed at one or more components, forcing them to
perform incorrect operations or generate incorrect responses
when polled.

To address these issues, multiple IDS approaches have been
proposed in the research literature. Although many rule-based
and signature-based IDSs were initially suggested, deep neural
network (DNN)-based IDS solutions have increasingly gained
traction, as they have shown to be more accurate than rule- and
signature-based IDS solutions [9], [14]–[16]. Optimisations
such as quantisation and pruning are often employed to make
these DNN-based IDSs deployable in resource-constrained in-
vehicle environments [5].



B. CAN testbeds

CAN testbeds have been proposed and developed to model,
test and validate CAN-based ECUs. In [17], the authors
proposed a virtual CAN overlay that abstracts the communica-
tion interface of the Multiprocessor System-on-Chip (MPSoC)
and provides programmers with an application programmer
interface (API) for interacting with the CAN network. The
work in [18] presents a scheme to establish identical time
base and message order in a virtual CAN network as the real
(physical) one. A lightweight CAN virtualisation is proposed
in [19] for virtual controllers to improve the functional and
Quality of Service(QoS) issues with prior works by reducing
the virtualisation overhead by 20%. A novel device-level
virtualisation is proposed in [20] allowing CAN to be deployed
in Integrated Modular Avionics (IMA) architecture. However,
most of the virtualisation schemes emulate the CAN layer and
are not compatible with external hardware CAN instances or
sensors. This limited the scalability and adaptability of these
simulation-based schemes for real-time multi-ECU test setups.
Similar to network virtualisation, ECU virtualisation has also
been explored for developing and optimising ECU architec-
tures for performance and safety [21], functional validation
of automotive software applications [22], [23] among others.
For large-scale testing, the work in [24] showed the use of
virtual ECUs as abstractions integrated into a network-on-chip
environment that is compliant with AUTOSAR specifications.
Our work takes inspiration from these approaches but uses a
RISC soft-core processor-based system as the ECU core with
CAN controller logic as a memory-mapped IP for each ECU;
ECUs are subsequently interconnected through a virtual CAN
bus to model the systems as closely as possible to the real
world.

C. HIL Test Setups

Hardware-in-the-loop simulators/emulators are widely used
for embedded system performance evaluation systems to accel-
erate the testing and validation of the performance of the sys-
tem during development or revision phases in an environment
that closely matches real-world settings. Early reported use of
HIL simulators was in the development and testing phases
of fly-by-wire systems, flight simulation [25] and missile
guidance systems [26], and for subsystem level verification of
components of spacecraft systems [27]. Several R&D efforts
in the automotive domain subsequently adopted HIL simula-
tions to verify ECU architecture, functionality and for safety
testing [28], [29]. Extensive software models have been used
to recreate system dynamics (e.g., of engines) when validating
ECU functions in an HIL setup [30]. Such frameworks often
tend to be specialised (and thus relatively inflexible), requiring
different setups to validate specific capabilities – for e.g.,
setups for protocol-level development/changes are inflexible to
be adapted for end-to-end functional validation of ECU archi-
tecture/software components. Additionally, capturing low-level
details leads to highly complex software models that force the
tests to be run at a slower speed than real-world deployment
conditions. Alternatively, some models abstract away low-level
details to improve speed of simulation/emulation, and in both
cases lead to additional development time for functional, safety

and integration tests at the system level. Field programmable
gate arrays (FPGAs) have increasingly become a key compo-
nent of such systems, allowing much simpler reconfiguration
of the setup for different testing/development scenarios while
also offering real-time performance as the dedicated hardware-
based setups [3], [31], [32]. Our work builds on this approach,
with a focus on enabling rapid prototyping and validation
of (hardware-) accelerated network security approaches (IDS,
IPS, smart controllers, integration strategies and others) for
in-vehicle networks.

III. SYSTEM ARCHITECTURE

In this section, we present the system architecture of the HIL
framework and the CAN testbed. The high-level overview of
the framework is shown in Fig. 2. The framework is comprised
of a software GUI front-end which interacts with the CAN
testbed that is implemented on an FPGA. The software can
access pre-prepared test profiles, ECU application object code
and relevant test cases from a pool of resources which can
be used to set up and automate the test cases. The interface
provides functionality to download the test configuration to the
testbed, download target code to the ECUs, execute the test
cases (attacks), perform real-time monitoring of the test and
generate data dumps for detailed analysis. For this develop-
ment, we have used AMD’s Artix-7 XC7A200T FPGA on the
Digilent Nexys Video kit. The large FPGA can accommodate
numerous soft-core processors with their own peripherals and
CAN network interface (mimicking full-fledged ECUs) as well
as dedicated blocks for injecting attacks, controlling the test
setups and for real-time observation/monitoring. Each ECU
runs its own application(s) independently and uses the CAN
interface to communicate with other ECUs on the network. In
addition to the software inputs, the dedicated I/O on the Nexys
board is also mapped as control and status inputs to each of
the ECUs. We discuss the various components of the testbed
in detail in the next sections.

A. Software Subsystem

The hardware testbed is controlled and configured primarily
through a graphical interface we developed using PyQt. Each
action in the GUI, partitioned into one of the 7 sections
on the GUI as seen in Fig. 2, uses a set of APIs defined
in Table I to interface with the hardware testbed via JTAG,
UART and Ethernet links from the host machine. The GUI
primarily relies on click-based configuration although the APIs
could be wrapped into scripts to automate the testing. The
interface configuration function uses the UART and JTAG
APIs to perform the configuration of a series of hardware
registers, counters and special function blocks in the testbed
and to perform serial status monitoring of different ECUs. This
link is also used to configure the Ethernet run-time debugger
link between the host and the testbed. The ECU configuration
subsystem is used to load different applications and system
configurations onto a target ECU, primarily through the JTAG
APIs. These are invoked when loading specific elf files to the
ECU, to reset specific ECUs during a testing session and to
periodically poll the status of the ECUs for updating on the
GUI.
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Fig. 2. Overview of the architecture of the hardware-in-the-loop simulator
showing how the different components interact with each other.

TABLE I
INTERFACES AND APIS

Link/Function API Description

UART/$monitor sys log() Logs of basic system status, high-level er-
rors, and IDS stats

UART/$config sys ctrl() Transmits configuration parameters to setup
ECU frequency, CAN bus mode, and default
simulation settings

UART/$attack att ctrl() Transmits specified injection attack content
or delivers DoS attack and fuzzing attack
commands to the corresponding attack core

UART/$monitor monitor() low-resolution log of CAN bus and the IDS
ECU signals

JTAG/$config prog node() Download ELF to specific ECU, configure
special nodes, and expose basic debugging

JTAG/$control reset node() Apply reset sequence to the specific node or
all nodes

JTAG/$config debug config() Configure wave capture through bridge
node.

Ethernet/$monitor bus log() Monitors CAN bus data at highest resolu-
tion.

Ethernet/$monitor signal capture() Captures pre-defined signals such as virtual
CAN bus levels, node data.

Ethernet/$monitor user capture() Monitors user-defined byte or bit-level data.

The interface configuration function is used to establish a
reliable communication interface between the CAN testbed
and the configuration/analysis features of the software system.
It can be used to specify the interface parameters and to
optionally set up high-speed connectivity between the host
and the testbed. Once the connectivity is established, the ECU
configuration subsystem is used to load different applications
and system configurations onto a target ECU. The interface can
be used to load specific elf files to the ECU and/or to reset
the ECU to a known good state if it encounters errors during
the testing phase. Once configured and active, the status of the
ECU and its parameters are periodically polled and updated

on the GUI when a test is in progress.
A key feature of our framework is the real-time monitoring

of the test setup and internal signals from the hardware
platform at very high granularity through a set of monitoring
APIs. The monitoring APIs allow for reading specific status
signals on demand or automatically reading them at a defined
periodicity (default 300 ms) and logging them for further
analysis. The API also allows simple operations to be applied
to the status signals (such as conditional checks and logical
operations) while being read from the hardware testbed to
flag any anomalies during a testing session in near-real-time.
Additionally, selected signals (from ECUs) and the bus activity
are captured in real-time and transferred back to the host
for visualising system conditions. The bridge node can be
configured using the configuration APIs to capture a sequence
of signals at the highest sampling rate (clock speed) and pack
them as layer-2 Ethernet packets to be sent to the host. On
the host, the receiving API will decode the signals from the
packet, add them to a wave visualiser for real-time monitoring
of the ECU states and the CAN network, and logs them for
offline analysis, if specified.

Finally, the attack injection and control are handled from the
GUI which invokes dedicated APIs that communicate with the
control node on the testbed. Using our framework, raw attack
messages from openly available datasets can be replayed on
the internal bus by the control node to recreate the attack
scenario on our testbed. The APIs also allow for specific attack
vector injections whereby the control node injects a targeted
attack message on the CAN bus, to model spoofing attacks.
Large-scale DoS and Fuzzing attacks can also be launched
this way, although the dedicated node on the hardware can be
used to inject them at higher speed by specifying a flag in
the API call. The APIs can also load long sequences of attack
vectors and benign messages (in a csv file, for instance) into
the test environment from the GUI and trigger the logging
system for automating long-form tests. An extension of the
logging API can be additionally used to perform quick parsing
of the captured CAN data bus to identify known attacks (such
as flooding-based DoS), tag them using labels, and log them
for further analysis. The tagging can be used to develop new
attack datasets and/or to support/validate online training of
supervised learning models with the hardware model-in-the-
loop.

B. Hardware Subsystem

The hardware subsystem (testbed) of our framework im-
plements the functional blocks of ECUs, the CAN bus, and
specialised control blocks that implement attack injection,
monitoring, and interfacing with the host PC. For our deploy-
ment, we use AMD’s Artix-7 XC7A200T (Nexys Video board)
as the FPGA platform to implement the testbed.

1) CAN Controller and Virtual CAN bus: To model the
CAN network, we modified the open-source CAN controller’s
host interface by adapting an AXI4 interface (for configuration
by ECU) and exposing selected internal signals via a register
interface to the bridge node. At the bus end, we use buffers
to connect tx and rx pins to the shared CAN bus (virtual bus)
with tristate logic on the tx lines to control transmission. The



TABLE II
TEST ECU FUNCTIONS DEPLOYED FOR THE EVALUATION

ECU# Implemented Function

ECU1 Engines and brake control unit
ECU2 Airbag actuators and light sensor for auto headlights
ECU3 Brake sensors and Collision detection sensors
ECU4 Controls headlights, tail-lights and brake lights

virtual bus implements the wired-AND logic behaviour of a
physical CAN bus on twisted-pair connections, thus allowing
all CAN protocol specifications such as inbuilt arbitration and
error flagging on the virtual bus. The bus functions and CAN
controller functionality were validated by wiring up to off-
the-shelf CAN controllers. The virtual bus exposes the CAN
signals via the Pmod interface on the Nexys board for external
monitoring (via scope), wiring up to physical transceivers for
bus expansion, and for scaling the testbed across multiple
FPGA boards.

2) ECU models: In the testbed, ECUs are modeled around
MicroBlaze soft processor and dedicated peripherals including
our modified CAN controller. The main functions of the 4
ECU system we emulated for our tests are shown in Table II.
Each ECU receives an independent clock signal from a clock
manager that can be configured to the required clock speed
at startup (from the host PC). At runtime, the software tasks
on the ECU perform periodic (and event-driven) processing of
sensor inputs and CAN messages and determines responses to
be applied to actuators and/or to be sent via the CAN interface.
For instance, in Figure 1 when ECU3 detects a collision from
the sensor input or CAN message, ECU1 read a corresponding
actuating message on the CAN bus to block the engine and
transmission unit, and ECU2 trigger the airbags based on
the CAN message to protect the passengers. Additionally, an
external reset can be applied to a specific ECU using the I/O
switches on the Nexys platform. The software application for
each ECU is implemented in bare-metal C and compiled using
Vitis-SDK. Additionally, each ECU implements a task event
counter as a life signal, the value of which is periodically
transmitted as a CAN message to indicate its status. At the
host, any deviation in the rate of increment can be detected as
an additional load on the ECU during the testing phase.

3) FINN-IDS core: To show the feasibility of validating
IDS models using the framework, we integrated a 5-layer 4-
bit quantised multi-layer perceptron (MLP) network described
in [5] as the IDS engine. The model was trained and quantised
using the brevitas quantisation aware training library [33]
and compiled to hardware using the FINN toolchain from
AMD [34]. The FINN flow generates an AXI-stream IP block
of the model which is then integrated as a coupled accelerator
to the ECU (case study-I) and also at the CAN controllers’
host-interface logic (case study-II). The specific MLP model
was chosen as it provided state-of-the-art detection accuracy
across multiple attack vectors with low resource- and energy-
overhead for near-line-rate detection on CAN systems. Note
that the same IDS IP block is used across both case studies to
show the ability of the flexible platform to support different

integration schemes and to perform trade-off evaluations in
near-real-world conditions.

4) External integration & extensions: While our tests use
self-contained ECUs with limited external I/O, the testbed
can be extended to allow hardware sensors and actuators (or
other I/O functions) to be connected to specific ECUs for a
full-fledged HIL environment. Similarly, external standalone
ECUs could be integrated into the test setup by connecting the
virtual CAN bus to a CAN PHY and transceiver to support the
line voltage on the physical layer. As mentioned before, the
hardware platform can be extended through the pmod interface
for multi-FPGA testbeds. The software component can also
scale in the above cases to enable real-time monitoring,
logging and attack injection in the expanded test setup, and
can be extended to support interfacing to multiple FPGAs
independently to monitor all ECUs with relative ease.

IV. IDS INTEGRATION CASE STUDY

We used the Artix-7 XC7A200T on the Nexys Video
development board as our testbed for the HIL simulator. For
our tests, the CAN controllers are configured for 500 kbps op-
eration, and the ECUs are clocked using independent 100 MHz
clocks. WaveTrace was used to display the real-time waveform
data received on the host machine. We evaluate the capabilities
by testing two IDS integration strategies progressing from an
ECU-coupled accelerator to an embedded accelerator within
the CAN controller’s datapath.

A. Case Study - I: IDS as a coupled accelerator

In this case, the IDS model is integrated as a traditional
memory-mapped accelerator to an ECU, MB 5 in Fig. 3, to
form an IDS-enabled ECU. The IDS IP is attached as an
AXI-streaming accelerator to the MicroBlaze processor, which
is dedicated to executing the IDS task. All other ECUs in
the network perform a different function as described before.
When a new message is available at the CAN interface of the
IDS-enabled ECU, the message is read and pre-processed by
a software task to generate a window of 4 messages, which
is fed as the input feature to the IDS core to check for attack
signatures. Once the IDS IP computes the result, a task on
MB 5 reads the result and applies a Softmax function on the
4 output values to arrive at the classification result. To display
the result on the GUI, the 4-bit computed result is read by the
bridge node and passed to the software API.

B. Case Study - II: Extended CAN controller with IDS

The coupled accelerator flow incurs software overheads and
latency in moving the message from the CAN interface to ECU
memory and subsequently to the accelerator and back, which
could affect the performance of critical tasks on the ECU. We
attempt to alleviate this latency and overhead by stitching the
FINN core directly to the CAN controller’s receive interface in
case-II. For simplicity, we use a CAN receiver-only core, but
the same approach could equally be applied with a full-fledged
CAN controller. A hardware pre-processor logic parses the
received messages directly off the host interface of the CAN
receiver and uses a FIFO as a sliding window to accumulate
4 consecutive CAN messages, which is passed as the feature
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Fig. 3. Overview of the CAN frames’ datapath through the different IDS integrations (with & without MicroBlaze ECU (MB) ) in the HIL environment. The
left-hand side architecture presents a state-of-the-art coupled accelerator approach and the right-hand side architecture presents an integration approach as an
extension of the CAN controller, with the coloured arrows indicating the flow of the CAN frame/features.

input to the IDS IP over the AXI streaming interface, stitching
the IDS function at the network interface. Vitis-HLS is used
to generate a hardware implementation of Softmax using DSP
blocks. The resulting predictions are read by the bridge node
as before to report the observations to the software APIs.

To compute the latency difference between the two ap-
proaches, we have instrumented the setup with timers which
capture elapsed time from the start of a CAN frame on the
bus to the completion of the Softmax function in both cases.
Also, both cases use identical IDS IP to deploy our DNN-
IDS function, with the final activation (Softmax) performed in
software (in case 1) or through dedicated hardware (in case
2). This allows us to quantify the benefits and/or overheads
of each integration approach in terms of IDS latency and
hardware resource consumption.

V. RESULTS

In this section, we present the different attack injection
capabilities tested through the platform and observe the re-
sponse of the ECU functions in the presence of these attacks.
Subsequently, we integrate IDS functionality and evaluate
the detection performance of the IDS model through the
HIL framework. We further quantify the detection latency of
the IDS with both the integration strategies within testbed
as discussed previously. Finally, we quantify the resource
overhead of the testbed and identify the overheads incurred
for IDS integration in cases I and II respectively.

1) Attack simulation on ECUs: To evaluate the attack
injection capabilities, we simulate three different attacks, DoS,
fuzzing, and spoofing, one each on three ECUs in the testbed.
We initially observe the normal ECU behaviour under no
attack conditions, and the expected responses from each ECU
in the presence of control input(s) are recorded automatically
through the setup. Subsequently, the attack conditions are

TABLE III
EXPECTED V/S OBSERVED BEHAVIOURS OF ECUS UNDER ATTACK

CONDITIONS.

Test
Case

Inputs Expected Result Under Attack

Collision
signal

ECU3
activates
collision
detected
signal

ECU2 activates
airbags, ECU1
will disable
engine control
(EC) & TCU

Under DoS attack, life signal lost,
airbag cannot be activated, EC and
TCU cannot be disabled, IDS re-
ports threat

Light
control
signal

ECU2
activates
light sensor

ECU4 activates
headlights and
tail lights

Under fuzzing attack, lights acti-
vated without any light sensor in-
put, IDS reports threat

Brake
signal

ECU3 senses
brake signal

ECU1 will per-
form braking ac-
tion ECU4 acti-
vates brake lights

Under spoofing attack, the brak-
ing action was unexpectedly termi-
nated, Brake lights not activated,
IDS reports threat

triggered using the software interface, which injects the attack
and automatically logs the network data and ECU responses
for logging and analysis. The details of the tests are presented
in Table III. Under all three attack conditions, normal ECU
functionality cannot be carried out leading to critical functional
loss such as no airbag deployment, braking action being
terminated abruptly, and headlights toggling on/off without
any user input. All three scenarios can potentially threaten
the safety of passengers under different conditions. Extended
attacks were also injected through random injection of attack
messages and looped testing through the software interface,
where a similar loss of functionality was observed across
the ECUs in the presence of attack messages. With the IDS
integrated, the attack messages were positively flagged by the
IDS for all three attack types, and we quantify the detection
accuracy of the model using the framework next.



TABLE IV
CONFUSION MATRIX CAPTURING THE CLASSIFICATION RESULTS OF THE

QNN-IDS.

Predicted Values

Attack Values Benign DoS Fuzzing RPM-Spoof

Benign 103169 5 2 0
DoS 3 23690 0 0
Fuzzing 23 0 28065 1
RPM-Spoof 0 0 0 25042

TABLE V
ACCURACY METRICS OF THE QNN-IDS.

Attacks Precicion Recall F1-Score

DoS 99.99 99.98 99.98
Fuzzing 99.99 99.91 99.95
RPM-Spoof 100 100 100

2) IDS Accuracy: The QNN-IDS integrated for our test is a
multi-class classification model that can detect DoS, fuzzing,
and spoofing attacks along with benign messages. For our
tests, we replayed 180,000 test messages from the openly
available CAR Hacking dataset [8] which consisted of benign
messages as well as different attack sequences, which were
loaded as raw data for the test with automated monitoring
and exporting enabled. The model achieved a classification
accuracy of 99.98%, and the detailed confusion matrix of
the classification result is shown in Table IV. Across the
entire test set, the model only misclassified 34 messages.
Furthermore, the model only misclassified 7 benign messages
as false positives out of the total 103176 benign messages in
the test set, which shows a low false alarm rate for the model.
The detailed table showing accuracy metrics (Precision, Recall
& F1-score) for all the attacks is shown in Table V. The key
capability here is that the model can be tested in an integrated
environment and the validation can be automated through the
framework to allow rapid prototyping of the IDS models in a
real environment.

3) Latency & Resource Utilisation: We quantify the detec-
tion latency for both the IDS integration strategies discussed
in the previous section. For case study I, we observe the total
detection time to be 5,056 us, from the message arriving at the
CAN interface to the completion of the Softmax activation in
the MB 5 IDS-ECU. For case study II, we observe more than
6× reduction in the detection latency with the classification
result available in 794 us from the message arriving at the
CAN interface to the completion of the hardware Softmax.
The latency computation in both the case studies includes
the message reading time from the CAN bus up to the final
results reported back by the bridge node. Embedding the
IDS closer to the controller alleviates software processing
overheads (and delays) for preprocessing, data movement
and Softmax activation, as shown in Fig. 3. Offloading pre-
processing (ID, payload extraction + message concatenation)
and post-processing (softmax) computations to hardware and
integrating this close to the CAN controller removes the
software bottleneck, and enables lower detection latency for

TABLE VI
RESOURCE UTILISATION OF HARDWARE NODES USED IN THE TESTBED.

Functions LUTs FFs BRAMs DSPs

ECU1 3330 2664 32 0
ECU2 3235 2653 32 0
ECU3 3319 2758 32 0
ECU4 3224 2614 32 0
Control Node 4549 3557 32 0
DoS Node 2658 2277 32 0
Bridge 2522 2713 32 0
Debug 736 1121 0.5 0
Ethernet 1079 1483 0 0

Total (%) 24930 (18.5) 23252 (8.6) 224.5 (61.5) 0 (0)

TABLE VII
IDS RESOURCE UTILISATION FOR BOTH CASE STUDIES.

Function LUTs (%) FFs (%) BRAMs (%) DSPs (%)

Case-I: IDS-ECU 5990 (4.5) 6297 (2.4) 39 (10.6) 0 (0)
Case-II: CAN-IDS 4788 (3.7) 4773 (1.8) 23 (6.2) 12 (1.6)

line-rate IDS implementations. For line rate detection on our
500 kbits/s CAN network, we consider the acquisition window
of 4 minimal-length CAN data frames (296 µs each) with
protocol overheads. In this case, the maximum latency for line
rate detection should be < 1184 µs. From the tests using our
HIL setup, we measure that IDS coupled to the CAN controller
(case II) can perform detection at 794 µs compared to the
5056 µs incurred by the traditional ECU-coupled IDS scheme.
For higher speed CAN interfaces, the latency of the IDS IP can
be further reduced through higher parallelization (unrolling) at
the expense of higher energy and resource consumption.

We further quantify the hardware resource utilisation of
all the common hardware components (ECUs, Control Node,
Injection Node, Bridge Node, and the Debug Node) which
are shared across both integration case studies in Table VI.
The resource consumption of the different IDS pathways is
captured in Table VII. The hardware offload consumes less
general purpose and memory resources than the MicroBlaze
IDS-ECU (IDS enabled ECU in the Table VII), while the hard-
ware Softmax incurs DSP blocks to maximize performance.
We observe a reduction of ≈1,200 LUTs (0.91 %), ≈1,500
FFs (0.59 %) and 16 BRAMs (4.3 %) with the extended CAN
controller scheme (CAN-coupled IDS in Table VII), compared
to the coupled accelerator IDS-ECU method described in
most literature. Additionally, the overall utilisation of the
hardware subsystem (with 4 ECUs and IDS) is less than
≈65% (BRAMs) of resources on the Artix-7 FPGA, making it
possible to scale the hardware subsystem to incorporate more
ECUs and faster data interfacing to the host, with a single
or multi-FPGA environment, making it an ideal solution for
large-scale HIL validation and testing setup.

VI. CONCLUSION

In this paper, we presented FAV-NSS, a hardware-in-loop
test framework that can effectively emulate a multi-ECU setup
with the CAN bus network protocol on an FPGA device. The



software subsystem of FAV-NSS provides numerous capabili-
ties for the user through graphical interfaces and APIs that
enable controlling/automating test cases (injection of DoS,
Fuzzing, Spoofing or other network attacks) on the CAN
bus, real-time logging of test data (network, ECU status), and
performing analysis and tagging of observed bus data at run-
time. The hardware subsystem models the ECUs using the
MicroBlaze processor with a CAN controller as a memory-
mapped peripheral. A virtual CAN bus connects together the
CAN controllers and implements the wired-AND logic to
model physical layer capabilities of the protocol. To show
the capabilities of the framework, we investigated multiple
hardware integration strategies for an IDS solution, aiming
to quantify the detection performance in terms of accuracy
and latency. We used the software framework to automate the
injection of attack vectors mixed with benign messages using a
large test set of 180,000 CAN messages. With the framework,
the detection accuracy of the IDS in both integration strategies
– close to the network controller or as a coupled accelerator to
an ECU – was measured. Additionally, the timing performance
of both approaches was characterised by the instruments in the
framework at runtime, with the network controller integration
achieving 6.3× reduction in latency compared to traditional
ECU-coupled IDS accelerator. In the future, we want to
further enhance the communication method between software
and hardware platforms to improve the capabilities of the
framework specifically for multi-FPGA testbeds and to model
ECUs using more complex processor architectures.
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