
FPGA-based Deep-Learning Accelerators for
Energy Efficient Motor Imagery EEG classification

Daniel Flood∗, Neethu Robinson† and Shanker Shreejith∗
∗Department of Electronic & Electrical Engineering, Trinity College Dublin, Ireland

†School of Computer Science & Engineering, Nanyang Technological University, Singapore
email: ∗{floodd1, shankers}@tcd.ie, †nrobinson@ntu.edu.sg

Abstract—In recent years, Deep Learning has emerged as
a powerful framework for analysing and decoding bio-signals
like Electroencephalography (EEG) with applications in brain
computer interfaces (BCI) and motor control. Deep convolutional
neural networks have shown to be highly effective in decod-
ing BCI signals for applications like two-class motor imagery
decoding. Their deployment in real-time applications, however,
requires highly parallel and capable computing platforms like
GPUs to achieve high-speed inference, consuming a large amount
of energy. In this paper, we explore a custom deep learning
accelerator on an off-the-shelf hybrid FPGA device to achieve
similar inference performance at a fraction of the energy con-
sumption. We evaluate different optimisations at bit-level, data-
path and training using a state-of-the-art deep convolutional
neural network as our baseline model to arrive at our custom
precision quantised deep learning model, which is implemented
using the FINN compiler from Xilinx. The accelerator, deployed
on a Xilinx Zynq Ultrascale+ FPGA, achieves a significant
reduction in power consumption (≈ 17×), sub 2 ms decoding
latency and a near-identical decoding accuracy (statistically
insignificant reduction of 2.5% average) as the reported baseline
subject-specific classification accuracy on an N (= 54) subject
motor imagery EEG (MI-EEG) dataset compared to the Deep
CNN model on GPU, making our approach more appealing for
low-power real-time BCI applications. Furthermore, this design
approach is transferable to other deep learning models reported
in BCI research, paving the way for novel applications of real-
time portable BCI systems.

Index Terms—Brain-Computer Interfaces, Deep Learning,
Field Programmable Gate Arrays, AI Accelerators

I. INTRODUCTION

Recent years have seen a significant rise in the application
of deep learning based inference and classification approaches
across multiple domains with significant improvements in the
fields of computer vision, and communication systems among
others [1]. The ability of deep neural networks (DNNs) to learn
and recognise intricate patterns has been a key enabler, allow-
ing non-domain experts to analyse complex features from raw
sensor data in many applications. Brain Computer Interface
(BCI) is one of the many areas within the domain of neuro-
and bio-engineering, where deep learning based decoding has
enabled significant improvements in classification accuracy
and generalisability.

BCI applications rely on the ability to decode neural activity
and map the brain states to the activation of controls on the ap-
plication’s physical interface [2], [3]. Non-invasive acquisition

978-1-6654-8356-8/22/$31.00 ©2022 IEEE

technique like Electroencephalography (EEG) is widely used
in BCI paradigms like motor imagery (MI) where characteris-
tic Sensorimotor rhythm (SMR) activations are monitored to
decode and classify right and left-hand motor imagery through
data-driven approaches including traditional linear/non-linear
classifiers, neural networks, transfer learning and deep learn-
ing [4], [5]. Recent research indicates that deep learning
based techniques are gaining popularity in building EEG-
BCI systems to improve decoding accuracy, with researchers
validating the performance of different network models on
a range of EEG datasets [6]–[13], eliminating the complex
signal processing and feature engineering steps required in
conventional BCI. Research in this area mostly focuses on
enhancing classification accuracy with little attention given to
the deployment challenges in real-world mobile applications.
In all cases, the processing overheads of deep learning based
methods are accelerated by deploying them on Graphical
Processing Units (GPU) in PC based BCI. However, PC based
BCI and deployments on GPU are expensive and power-
hungry, often restricting EEG-BCI applications to laboratory
environments. Offloading complex signal processing tasks of
conventional EEG-BCI to platforms like field programmable
gate array (FPGA) has been shown as an alternative approach
to improve the cost and portability of EEG-BCI [14], [15].
FPGA-based implementations have also shown promising re-
sults with deep learning based EEG-BCI applications, enabling
low-latency decoding in a compact footprint [16], [17]. How-
ever, most such implementations require significant design
effort and optimisations to achieve similar performance to PC
based BCI, making it non-trivial for non-experts. Furthermore,
specific customisation at layers restricts the scalability and
adaptability of such FPGA accelerated EEG-BCI decoding
schemes. In many application domains, FPGA acceleration
of deep learning models has enabled low-latency low-power
inference by optimising the data width of inputs, weights,
biases and subsequently operators, while providing similar
accuracy to floating-point models.

In this paper, we present a case for FPGA acceleration of
a deep CNN model for binary classification of EEG-BCI for
motor imagery. The contributions of this paper are as follows:

• Custom quantisation of the state of the art deep-CNN
Braindecode architecture [13] for minimising latency and
energy consumption without impacting inference accu-

racy.
• Optimisations in the design phase, training and hardware

generation using the FINN compiler flow [18].
• Quantify the performance, latency and energy consump-

tion of the quantised model on a hybrid FPGA device.
The choice of Braindecode architecture as the baseline model
is driven by the extensive analysis performed by the authors
and the high classification accuracy of the model, as well as the
network layers supported by the FINN compilation flow. We
perform subject-dependent hold-out training and evaluate the
decoding accuracy of motor imagery across 54 subjects (from
the state-of-the-art EEG dataset [19]). Our results show that a
highly quantised 2-bit model deployed as a custom accelerator
can achieve under 2 ms decoding latency while consuming
nearly 17 × less power when deployed on a hybrid Zynq
Ultrascale+ XCZU7EV device when compared to the baseline
model on an Nvidia GTX 1080. The results also show that
the 2-bit model achieves this performance with the minimal
trade-off in decoding accuracy of 2.5% averaged across the 54
subjects, making it an efficient design paradigm for low-power
mobile BCI-MI applications.

II. BACKGROUND AND RELATED WORK

A. Brain Computer Interface

EEG is a widely used noninvasive data acquisition method
for capturing brain activity for BCI research. A BCI system
decodes neural activity through a variety of algorithms and
tools to interpret the brain states, which are then mapped to
activation commands for visualisation and/or for controlling
external devices. Deep learning methods have enabled superior
decoding performance of BCI signals when compared to
conventional signal-processing based classification techniques,
resulting in numerous tools and architectures being explored
by researchers. The choice of brain signal representation, type
of network model used and optimisations to hyperparameters
have shown varying levels of success in reported methods
in the literature, with no clear network/model providing a
clear optimal solution [5], [13] . Many researchers have
also experimented with data representation and transformation
of the time series EEG data to minimise information loss
and/or computational cost of the decoding engine. In [6],
[7], the authors apply Hilbert transformation to raw EEG
signal and use the envelope as input to a convolutional neural
network (CNN) model to decode neural information. In [8],
the authors use a recurrent-CNN model to decode cognitive
load from multi-spectral image inputs that were generated
from the EEG signal. Deep CNNs have also been utilised
to decode attention and consciousness parameters from EEG
data and to enable the generalisation of the model through
inter-subject transfer learning [9], [10]. In [11], the authors
convert the time series EEG signal into 2D images using
short-term Fourier transform combining the time, frequency
and location information of the signal, which is then fed to
a 1D CNN and stacked auto-encoders to classify the signal.
In [13], the authors propose the deep ConvNet architecture

to decode raw EEG signals by organising them as a 2D
array in the time-space domain without requiring specific
feature engineering to decode the information. In [20], authors
evaluated MI classification using deep ConvNet in subject-
specific, subject-independent and subject-adaptive experiments
and reported higher performance than conventional machine
learning approaches. Targeting real-world deployment of such
decoders, several studies have explored network compression
techniques to reduce the implementation complexity of deep
networks [21], [22]. Additionally, hardware acceleration tech-
niques have been proposed for deep networks based on both
application specific integrated circuit (ASIC) and field pro-
grammable gate array (FPGA) implementations. Our approach
explores further low-level optimisations to the state-of-the-
art deep CNN architecture aiming to minimise computational
complexity and energy consumption of deep learning based
BCI-MI decoding.

B. FPGA acceleration of deep learning models

Deep learning architectures like CNNs have proven to
be a powerful tool for solving challenging computer vision
problems [23] as well as in non-vision embedded applications
like wireless networks [24] and network security [25]. A key
challenge is to embed these models close to the sensors to
enable timely inference while consuming minimal power. An
efficient way of deploying deep learning in such applications is
to devise custom accelerators on platforms like FPGAs, which
offer the flexibility to update the design post-deployment
at much lower power consumption than GPU deployments.
However, optimising bespoke deep learning designs for FPGA
deployment requires considerable design effort to optimise the
low-level architecture for efficient use of FPGA resources and
to minimise off-chip storage. Early researchers attempted to
address these challenges by reducing the bit-width of param-
eters through quantisation [26], deep compression [27] and
combinations of these through manual intervention. Tools like
FINN [18] and LUTNET [28] map high-level representations
of deep neural networks to custom hardware on FPGAs,
automating many areas of the mapping flow. FINN allows
designers to exploit custom quantisation at each supported
layer of the network (down to 1-bit fully binarised network)
and employ a variety of transformations in the compila-
tion flow to create highly efficient custom accelerators that
can be easily deployed on hardware using frameworks like
PYNQ or as a standalone custom design. FINN also enables
quantisation aware training of the model using the Brevitas
library to minimise the impact of reduced precision on the
inference accuracy of the model [29]. Vendor tools like Vitis-
AI from Xilinx can compile high-level deep learning models
to executable designs that runs on off-the-shelf deep learning
processing units (DPU) on Xilinx FPGAs [30]. While Vitis-
AI and DPU flow provide a design flow similar to GPU
deployments allowing non-experts to deploy them with mini-
mal effort, this flow enforces a fixed 8-bit quantisation across
all layers of the model and supports only post-quantisation
optimisation of weights/biases, which could lead to a reduction

in the inference accuracy. In this paper, we use the FINN flow
to exploit a fully custom design to maintain high decoding
accuracy while optimising the energy and resource footprint
of the deep CNN model on the FPGA.

III. SYSTEM DESIGN AND ARCHITECTURE

A. BCI Motor Imagery EEG Dataset

For our evaluation, we use the EEG dataset from the Depart-
ment of Brain and Cognitive Engineering, Korea University
which is openly available for BCI research. The dataset was
captured using a BrainAmp recorder from fifty-four subjects,
both male and female, in the age group of 24–35 [19]. The
test recorded the BCI signals from the participants while
performing two-class MI using 62 Ag/AgCl electrodes at a
sampling rate of 1 kHz, using a well-established test protocol
in BCI research [31]. For each subject, combining the data
from all the recording sessions, the dataset consisted of 400
trials of motor imagery EEG with an equal number of right
and left-hand trials. In our evaluation, we used a hold-out
approach, in which we split the data into non-overlapping
{50-25-25}% sets thereby obtaining training, validation and
evaluation sets of 200, 100 and 100 trials respectively. Each
trial consists of 4 seconds of EEG data and each such segment
is further downsampled by a factor of 4 for network training
and testing. For our evaluation, we use data from all the
62 channels for each participant to train and quantify the
classification accuracy of our model for each subject as well
as the average inference accuracy across all users.

B. BCI - DeepCNN model

As mentioned, we use the state-of-the-art deep CNN model
proposed by [13] as our baseline model for decoding EEG-
MI. Fig. 1 shows the simplified architecture of this model,
composed of 5 network layers. The first convolutional-pooling
layer filters the input across the time and spatial domains,
without any activation layer between them. The output of
these layers are batch normalised before passing through the
Exponential Linear Unit (ELU) activation function and a max-
pooling layer with a stride of (3,1) and an identify layer.
The subsequent convolutional-pooling layers follow a similar
setup with a single convolutional layer performing temporal
filtering and dropout layers to improve the learning. The
final dense layer maps the outputs to one of the two classes
(left-hand/right-hand) followed by the LogSoftmax activation
function that outputs the predicted class based on the dense
node output with highest probability.

C. Optimising the model for FINN compiler

Prior to mapping the design to hardware, we evaluated
the contribution of each layer of the network to the overall
decoding accuracy and also to determine the compatibility
of the operators with the FINN compiler. The 2-D asym-
metric convolution filters used in the spatial convolution in
the ConvPool-1 layer of the design were replaced with 1-D
temporal filters since asymmetric 2-D kernels are unsupported
by FINN; however, we also observed that this modification

ConvPool-1

ConvPool-2

ConvPool-3

ConvPool-4

Classification

25 Conv (1x10)
25 Conv (Nc x 1)

Pool (1 x 3)

Stride (1 x 3)

50 Conv (25 x 10)

Stride (1 x 3)

100 Conv (50 x 10)

Stride (1 x 3)

200 Conv (100 x 10)

Stride (1 x 3)

convolutional

ELU + max pooling

Dense

LogSoftmax

Input EEG Nc x Nt

Fig. 1: State of the art deep CNN model for decoding EEG
signals used as baseline model [13]

showed no appreciable change in the decoding accuracy of
subject-specific test cases. ELU activation functions were
replaced by the non-linear Rectified Linear Unit (ReLU) func-
tion at all layers. The kernels shapes of convolutional and max-
pooling layers were adapted to enable optimal compilation of
the network through FINN from (10,1) to (9,1) and (3,1) to
(4,1) respectively. This ensured that the shape of the input data
to each max-pooling layer was divisible by the kernel shape, as
required by the FINN compiler. The strides of the max-pooling
layers were adapted to match the kernel shapes at these layers
to prevent the kernels from overlapping. The optimised model
is further quantised and trained using the Brevitas library.

D. Training the optimised quantised model

We trained the model using the ”subject-specific” training
strategy developed by [32]. In this mode, hold-out training is
performed using the Brevitas framework, with the subject’s
data split into non-overlapping segments for training, valida-
tion and testing {50-25-25}. Brevitas integrates a set of ab-
stractions to model non-standard precision within the datapath
of the network at training time to perform quantisation aware
training. The model was trained for 200 epochs using a batch
size of 16 with AdamW optimiser. Each trained model was
subsequently evaluated on the test fragment of the dataset,
and is repeated across all 54 subjects to determine the mean
accuracy. The input data was quantised to 16-bit precision.

The above steps were repeated for different quantisation
levels of the model from 8 to 2-bit. The inference cost
and the average accuracy of the model across 54 subjects
were captured in each case to determine the configuration
for hardware deployment. In this research, we restrict our
evaluation to uniform quantisation across the layers to limit
the design space. The final trained quantised models were
exported in ONNX representation for implementation using
the FINN compiler.

E. Hardware generation and dataflow optimisations

To generate synthesisable model from the ONNX represen-
tations, the FINN compiler applies a series of transformations

on the ONNX graph to generate the dataflow architecture of
the model. In our design, the layers of the graph were stream-
lined [33] and dataflow partitioned to isolate non-synthesisable
layers (like input quantiser) from the synthesisable graph.
The level of parallelism and performance were configured
by choosing the degree of hardware resource folding, target
performance (set to 1500 fps), clock frequency (set to 100
MHz) and maximum matrix-vector activation unit width (set
to 20). FINN compiler then invokes high-level synthesis tools
to generate the individual building blocks of the model and
combines them to create the stitched IP block of the model
for use in the deployment flow.

F. Deploying on the FPGA device

With the stitched IP generated, standard vendor flow can
be used to synthesise the hardware for deployment on an
FPGA platform. For our experiment, we utilise the Python
productivity for Zynq (PYNQ) framework to deploy the model
on a Zynq Ultrascale+ XCZU7EV hybrid FPGA (ZCU104
development board). The hybrid Zynq family of devices
integrate capable arm processors with a range of hardened
peripheral logic and interface protocols on the processing
system (PS) section of the device, allowing seamless software-
based interfaces to external peripherals over standard inter-
faces like CAN, SPI and others. Custom logic blocks are
implemented in the programmable logic (PL) region, which
can then be accessed as custom peripherals/accelerators from
the software application on the processor through a range
of high-performance or low-bandwidth interface ports. High-
level APIs enable software applications to offload tasks to
such accelerators through non-blocking function calls from the
software.

In case of PYNQ deployments, custom hardware circuits
to be integrated on the PL region as overlays, mimicking
the design flow using software libraries, with standardised
APIs to interface with the overlay’s capabilities. The PYNQ
transformation invoked by the FINN compiler wires up the
interfaces exposed by the design into the PYNQ shell allowing
the model to be executed using the PYNQ runtime APIs.
Subsequently, standard vendor flow is invoked to synthesise
and implement the design and to generate the bitfile for the
target device as well as the PYNQ runtime files to execute
the model on the target device, both of which can then be
copied to the device to execute the model. The PYNQ runtime
are executed on top of a Linux kernel with a Python-based
library framework which is used to interact with our quantised
model on the PL for our experiments. The runtime also offers
additional capabilities like active monitoring on the power
rails on the board to capture highly accurate real-time power
consumption of the models.

IV. EXPERIMENTAL RESULTS

In this section, we quantify the decoding accuracy of the
quantised model(s) at different bit widths and compare them
against our baseline deep CNN model. A workstation-class
machine with an 8-core Intel i7-6700K CPU and Nvidia GTX

QdCNN models 2-bit 4-bit 6-bit 8-bit

Normalised Inference Cost 0.02 0.42 0.73 1.0

TABLE I: Inference cost of the quantised models (QdCNN)
inferred through the FINN library and normalised to the 8-bit
model.

1080 GPU is used to train all models. Training the quantised
model using the Brevitas library incurs almost double the
time taken by the baseline deep CNN model. The baseline
model (referred to as Deep CNN in results) was deployed
on the Nvidia GTX 1080 GPU with the power measurements
captured using the Nvidia Management Library (NVML). The
quantised model (referred to as QdCNN-n bit, n specifying
the quantised bit-width) was deployed on the Xilinx Zynq
Ultrascale+ XCZU7EV FPGA on the ZCU104 development
board. The power consumption of the QdCNN model while
performing BCI decoding was measured using the PYNQ-
PMBus package to monitor the power rails directly. The
power measurements were averaged over 1000 decoding runs
across all 54 subjects. We also quantify the latency of both
approaches to detect the time taken to process each input
sample and report the average latency over 1000 decoding
cycles.

A. Decoding accuracy vs Resource costs

Fig. 2 captures the average decoding accuracy across all
54 subjects achieved by the QdCNN model using the Zynq
Ultrascale+ FPGA as the target platform and compares them
against the state-of-the-art Deep CNN model on the GTX
1080 GPU. We explore 8, 6, 4 and 2-bit uniform quantisation
across all layers, with the BCI input quantised at 16-bit for
the QdCNN model, while the baseline model was decoding
at the native 32-bit precision. The plot shows that higher
precision at layers does not provide any appreciable change
in the average decoding accuracy compared to the lowest
precision 2-bit model. To test the statistical significance of
our proposed approach, we performed a two-sided Wilcoxon
rank sum test. The test concluded that the 2.5% drop in
classification accuracy observed in the case of the quantised
model is statistically insignificant (p = 0.6425).

We further quantify inference costs incurred by each of
the quantised models using a FINN utility function (inference
cost) to estimate the memory footprint and operational com-
plexity of each model. Inference cost captures the memory
footprint and binary operations cost, which are normalised
(against a baseline) and linearly combined to arrive at the
normalised inference cost for each quantisation level. Table I
shows the inference cost of different quantisation modes
normalised to the 8-bit case. It can be seen that the inference
cost of the 2-bit model is only 2% of the 8-bit model and is
significantly below the 4-bit model. Combining the two results,
we can infer that the QdCNN-2bit model offers the best trade-
off between decoding accuracy and resource consumption.

Fig. 3 shows the decoding accuracy achieved by the
QdCNN-2bit model for each subject and compares them

Fig. 2: Average decoding accuracy across all subjects of the
baseline Deep CNN model against the proposed quantised
model at different bit-precision’s.

Logic #LUTs #FF #BRAMs #DSP48

QdCNN-2bit 88201 110068 108 0
wrapper 9004 19154 0 0

Total 97205 129222 108 0
(%) 42.2 28.0 34.6 0

TABLE II: Hardware resource consumption of the 2-bit pre-
cision QdCNN model on the XCZU7EV FPGA.

against the baseline Deep CNN model. It can be observed
that the quantised model offers similar decoding accuracy in
many cases and outperforms the baseline model in some cases.
The QdCNN-2bit achieves an average decoding accuracy of
61.8% across all 54 subjects and a median decoding accuracy
of 60.0%, compared to the 64.2% mean and 59.0% median
accuracy of the baseline model, making their generalised
decoding performance almost identical. In the next section,
we quantify the resource overheads, power consumption and
latency of the QdCNN-2bit model when deployed on the Zynq
FPGA.

B. Hardware utilisation, Power consumption and Latency

To compute the resource consumption, the QdCNN-2bit
model is synthesised targeting the XCZU7EV FPGA device
and integrated using the PYNQ framework, as described in
section III-F. Table II shows the overall resources consumed
by the QdCNN-2bit model on the FPGA and the resources
incurred by the supporting logic for interfaces to the ARM
cores on the PS. The ARM cores are executing Linux OS
and a Python support framework (through the PYNQ image)
that offers APIs to communicate with the hardware model
deployed on the programmable logic region of the device. The
resource consumption shows that the compact model consumes
nearly 42% of the general purpose resources (LookUp Tables
or LUTs) on the device, leaving sufficient resources for any
custom logic/processing blocks to interface directly with BCI-
MI sensors/peripherals.

We further quantify the active power consumption of our
model while performing BCI-MI decoding by measuring the
real-time power consumption from the power rails on the
board. For this experiment, the samples from our subject
dataset is fed as inputs to the model sequentially, mimicking a
streaming processing setup with the EEG-BCI sensors directly

Device Model Power (W) Latency (ms)

XCZU7EV FPGA 2-bit QdCNN 2.52±0.03 1.93±0.06
Nvidia GTX 1080 Deep CNN 42.69±1.33 1.11±0.09

TABLE III: The performance of the FPGA and GPU during
model inference.

connected to the board. We use the same strategy to monitor
the power consumption of the baseline Deep CNN model on
the GTX 1080 GPU, where the real-time power consumption
of the GPU alone was measured using the Python wrappers
for NVML. This setup also allows us to measure the latency
incurred for decoding each time sample for both designs. All
measurements are averaged across 1000 samples and across all
subjects. The QdCNN model was clocked at 100 MHz while
the GTX 1080 was clocked at its base clock (1607 MHz).
The results are tabulated in table III. It can be seen that the
QdCNN-2bit on FPGA achieves 16.9× reduction in power
consumption over baseline model on the GTX 1080 GPU.
Also, the QdCNN achieves sub 2 ms decoding latency when
averaged across multiple runs which is slightly below the base-
line model due to higher parallelism enabled by the GPU. Note
that typical end-to-end delays in real-time BCI-MI systems are
orders of the magnitude higher. The significant reduction in
power consumption and the near identical performance makes
our approach substantially better than the state-of-the-art for
low-power real-time mobile BCI applications. Also, the design
approach can be easily applied to other deep learning models
described in BCI literature with potentially similar advantages
in decoding accuracy, latency and power consumption.

V. CONCLUSION

Deep learning has emerged as the design tool of choice
for building generalised neuroengineering systems for wide
range of applications. While researchers in the area have
explored ways to improve decoding accuracy, deploying deep
learning accelerators for low-power, real-time and mobile BCI
applications is an open problem. In this paper, we evaluate
the deployment of deep learning for BCI-MI using hybrid
FPGAs, exploiting optimisations to the deep learning model
for generating a light-weight efficient design for the FPGA.
We explore deep quantisation through the FINN compiler tools
and Brevitas training library to generate quantised variants of
the state-of-the-art deep CNN model with minimal impact on
decoding accuracy. Our results show that a 2-bit quantised
model on the FPGA achieves ≈ 17× reduction in power con-
sumption with low-decoding latency (< 2 ms) while achieving
nearly identical decoding accuracy as the state-of-the-art deep
CNN model on a GPU, making our approach ideal for low-
power real-time BCI decoding using deep learning techniques.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain–computer interfaces for communication and control,”
Clinical neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.

Fig. 3: Decoding accuracy of each subject using the proposed 2-bit quantised model (QdCNN-2bit) compared to the state-of-
the-art Deep CNN model (Deep CNN) [13].

[3] D. J. McFarland and J. R. Wolpaw, “Brain-computer interfaces for
communication and control,” Communications of the ACM, vol. 54,
no. 5, pp. 60–66, 2011.

[4] B. He, B. Baxter, B. J. Edelman, C. C. Cline, and W. Y. Wenjing, “Non-
invasive brain-computer interfaces based on sensorimotor rhythms,”
Proceedings of the IEEE, vol. 103, no. 6, pp. 907–925, 2015.

[5] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rako-
tomamonjy, and F. Yger, “A review of classification algorithms for EEG-
based brain–computer interfaces: a 10 year update,” Journal of neural
engineering, vol. 15, no. 3, p. 031005, 2018.

[6] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 11,
pp. 5619–5629, 2018.

[7] S. Sakhavi and C. Guan, “Convolutional neural network-based transfer
learning and knowledge distillation using multi-subject data in motor
imagery BCI,” in Proc. International Conference on Neural Engineering
(NER), pp. 588–591, 2017.

[8] P. Bashivan, I. Rish, M. Yeasin, and N. Codella, “Learning represen-
tations from EEG with deep recurrent-convolutional neural networks,”
arXiv preprint arXiv:1511.06448, 2015.

[9] F. Fahimi, Z. Zhang, W. B. Goh, T.-S. Lee, K. K. Ang, and C. Guan,
“Inter-subject transfer learning with an end-to-end deep convolutional
neural network for EEG-based BCI,” Journal of neural engineering,
vol. 16, no. 2, p. 026007, 2019.

[10] M. Lee, S.-K. Yeom, B. Baird, O. Gosseries, J. O. Nieminen, G. Tononi,
and S.-W. Lee, “Spatio-temporal analysis of EEG signal during con-
sciousness using convolutional neural network,” in Proc. International
Conference on Brain-Computer Interface (BCI), pp. 1–3, 2018.

[11] Y. R. Tabar and U. Halici, “A novel deep learning approach for classi-
fication of EEG motor imagery signals,” Journal of neural engineering,
vol. 14, no. 1, p. 016003, 2016.

[12] A. Echtioui, W. Zouch, M. Ghorbel, C. Mhiri, and H. Hamam, “A Novel
Ensemble Learning Approach for Classification of EEG Motor Imagery
Signals,” in Proc. International Wireless Communications and Mobile
Computing (IWCMC), pp. 1648–1653, 2021.

[13] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for EEG decoding
and visualization,” Human brain mapping, vol. 38, no. 11, pp. 5391–
5420, 2017.

[14] K.-K. Shyu, P.-L. Lee, M.-H. Lee, M.-H. Lin, R.-J. Lai, and Y.-J.
Chiu, “Development of a low-cost FPGA-based SSVEP BCI multimedia
control system,” IEEE Transactions on biomedical circuits and systems,
vol. 4, no. 2, pp. 125–132, 2010.

[15] K. Belwafi, F. Ghaffari, R. Djemal, and O. Romain, “A hard-
ware/software prototype of EEG-based BCI system for home device
control,” Journal of Signal Processing Systems, vol. 89, no. 2, pp. 263–
279, 2017.

[16] C. Heelan, A. V. Nurmikko, and W. Truccolo, “FPGA implementation of
deep-learning recurrent neural networks with sub-millisecond real-time
latency for BCI-decoding of large-scale neural sensors (104 nodes),” in
Proc. International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 1070–1073, 2018.

[17] R. R. Shrivastwa, V. Pudi, and A. Chattopadhyay, “An FPGA-based
brain computer interfacing using compressive sensing and machine
learning,” in IEEE Symposium on VLSI (ISVLSI), pp. 726–731, 2018.

[18] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 65–74, 2017.

[19] M.-H. Lee, O.-Y. Kwon, Y.-J. Kim, H.-K. Kim, Y.-E. Lee, J. Williamson,
S. Fazli, and S.-W. Lee, “EEG dataset and OpenBMI toolbox for three
BCI paradigms: an investigation into BCI illiteracy,” GigaScience, vol. 8,
no. 5, p. giz002, 2019.

[20] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, “Adaptive transfer
learning for EEG motor imagery classification with deep Convolutional
Neural Network,” Neural Networks, vol. 136, pp. 1–10, 2021.

[21] R. Vishnupriya, N. Robinson, R. Reddy, and C. Guan, “Performance
Evaluation of Compressed Deep CNN for Motor Imagery Classification
using EEG,” in Proc. International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), pp. 795–799, 2021.

[22] H. Cecotti and A. Gräser, “Neural network pruning for feature selection-
Application to a P300 Brain-Computer Interface,” in ESANN, Citeseer,
2009.

[23] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung, “Superhuman
accuracy on the SNEMI3D connectomics challenge,” arXiv preprint
arXiv:1706.00120, 2017.

[24] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wire-
less networking: A survey,” IEEE Communications surveys & tutorials,
vol. 21, no. 3, pp. 2224–2287, 2019.

[25] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, 2020.

[26] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[27] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[28] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides, “LUTNet:
Rethinking inference in FPGA soft logic,” in Proc. International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
pp. 26–34, 2019.

[29] A. Pappalardo, “Xilinx/brevitas,” 2021.
[30] Xilinx, “Zynq DPU v3.2,” 2020.
[31] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-

computer communication,” Proceedings of the IEEE, vol. 89, no. 7,
pp. 1123–1134, 2001.

[32] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, “Adaptive transfer
learning for eeg motor imagery classification with deep convolutional
neural network,” Neural Networks, vol. 136, pp. 1–10, 2021.

[33] Y. Umuroglu and M. Jahre, “Streamlined deployment for quantized
neural networks,” arXiv preprint arXiv:1709.04060, 2017.

