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Abstract—Federated Learning (FL) is a distributed learning
scheme that enables deep learning to be applied to sensitive data
streams and applications in a privacy-preserving manner. This
paper focuses on the use of FL for analyzing smart energy meter
data with the aim to achieve comparable accuracy to state-of-
the-art methods for load forecasting while ensuring the privacy
of individual meter data. We show that with a lightweight fully
connected deep neural network, we are able to achieve forecasting
accuracy comparable to existing schemes, both at each meter
source and at the aggregator, by utilising the FL framework. The
use of lightweight models further reduces the energy and resource
consumption caused by complex deep-learning models, making
this approach ideally suited for deployment across resource-
constrained smart meter systems. With our proposed lightweight
model, we are able to achieve an overall average load forecasting
RMSE of 0.17, with the model having a negligible energy
overhead of 50 mWh when performing training and inference
on an Arduino Uno platform.

Index Terms— Federated learning, deep neural networks,
Non - i.i.d distribution, data heterogeneity

I. INTRODUCTION

Electricity demand forecasting is a crucial function in
the energy industry to allow both producers and distribution
system operators to optimize the generation and distribution
of electricity in real-time [1]. It aims to balance the supply
and demand curve and maintain the stability of the electric
grid across the entire network of producers and consumers.
Smart energy meters [2] play a vital role in load forecasting by
integrating communication capabilities on top of their ability
to monitor energy consumption accurately [3]. Smart meters
transmit demand data from consumers at specified intervals
to distribution system operators, allowing them to observe the
data in real time, make predictions on future demand, and
adapt the grid to respond to this expected demand. This data-
driven approach has enabled electric grid operators to optimize
energy generation and storage to adapt to load peaks from the
supply-side, and at the same time achieve demand-side load
balancing through novel schemes like dynamic pricing tariff
rates to achieve supply-demand equilibrium [4].

Researchers have proposed different algorithms for load
forecasting that primarily enables dynamic energy pricing and
usage optimization [5]. In [4], the authors apply gradient-
boosted regression trees on the Spanish Energy dataset to
minimize prediction error for a day-ahead forecast, showing
the effectiveness of ML models in load forecasting. However,
load forecasting is a challenging task due to the stochastic
nature of customer usage profiles. In [6], the authors show
that the inclusion of spatial and temporal parameters can have
a significant impact on the accuracy of load prediction. Area-
based clustering techniques have also been explored to group

customers with similar electric energy consumption patterns
in a spatiotemporal window to improve the accuracy of load
forecasting [7], [8].

Hybrid models combining classical and deep learning meth-
ods have also demonstrated promising results in load forecast-
ing. In [9], the authors developed a hybrid model utilizing
ARIMA, logistic regression, and deep neural networks to
predict peak load days with a 70 % accuracy. Other studies
reported in the literature have proposed models based on
Convolutional neural networks (CNNs) with fuzzy time series,
achieving superior results compared to traditional models [10],
[11]. Using complex models such as a standalone Long Short
Term Memory (LSTM) model [12], a combination of LSTM
and CNN [13], and Gated Re-current Units (GRU) combined
with CNN [14] have also shown to achieve similar prediction
performance. The use of rolling updates and Bi-LSTMs was
shown to reduce the computational time over other deep
learning methods, while also improving the accuracy of load
forecasting [15].

While most deep learning models have been primarily fo-
cused on improving forecasting performance, privacy concerns
have risen with the centralized learning approach used by load
forecasting schemes. In the case of centralized models, data
from smart meters of consumers is monitored and accumulated
at locations within the distribution grid, which is used by
the model to predict peak loads or other learned parameters
about the demand in specific clusters. It has been shown that
non-intrusive analysis of granular load curves can provide
information about appliances, usage patterns and hence per-
sonal details about consumers [16], [17]. Privacy-preserving
machine learning (ML) through federated learning (FL) is a
promising scheme to address the challenges of centralized
learning on sensitive data [17]. With FL, individual models
can be trained collaboratively and locally, removing the need
to accumulate and share sensitive data across the network.
While FL has shown to be effective in other domains [18],
[19], its application to load forecasting is very limited. In [20],
the authors propose a combination of LSTM and dense neural
network within an FL framework for load forecasting and uti-
lize clustering to improve the model’s prediction performance.
However, the root mean squared error (RMSE) measure of
the federated approach was higher than the centralized learn-
ing technique. The work in [21] achieved better prediction
performance using a global generalized model aggregated
from locally trained LSTM models at the consumer end, and
by incorporating spatiotemporal factors into the framework.
However, the complexity of local and global models as well as
their high energy consumption is a barrier to their widespread



deployment in constrained devices such as smart meters.
In this work, we apply an FL framework for short-term

load forecasting using the openly available smart meter energy
consumption dataset for London households [22]. The key
objective is to show that comparable accuracy to state-of-
the-art methods in load prediction can be achieved using
lightweight deep neural network (DNN) models within an FL
framework to restrict the need for granular data sharing and
aggregation across the network. To replicate real-world non-
independent and identical distribution (i.i.d.) conditions, we
consider limited random connections for each round of FL,
simulating scenarios where not all devices are participating in
the learning process. The main contributions of this paper are
summarized below.

1) A lightweight feed-forward model within an FL frame-
work to achieve identical and/or superior short-term
load forecasting performance, even while considering
limited device connections within the cluster (non i.i.d
condition).

2) Combining the FL flow with clustering to achieve a
better global representation within each cluster, leading
to improved forecasting performance.

3) Evaluate our approach and demonstrate that lightweight
models are sufficient to achieve similar load forecasting
performance when compared to other complex models.

4) Quantify the overheads of the proposed lightweight
models on a lightweight microcontroller that mimics an
actual smart meter device.

The rest of this paper is organized as follows: Section
II discusses the proposed federated learning framework, and
Section III illustrates the employed methodology in detail;
Section IV presents the case study performed with the results
analysis; and conclusions are drawn in Section V.

II. LIGHT-WEIGHTED FL-BASED LOAD FORECASTING
SCHEME

A. Federated Learning Algorithm
In a traditional centralized scenario 1, energy consumption

data from participating household smart meters is sent to a
cluster head (typically at a substation level), where the global
server performs model training and inference. In contrast, with
an FL setup 2, each household performs its own edge training
of local models based on their individual consumption data.
These updated models are then sent to the global server at
the substation for aggregation, creating the global model. The
global model is subsequently shared with the households for
evaluation. The entire cycle keeps repeating, allowing the local
and global model to evolve based on changes in individual
consumers’ consumption and generation.

The federated algorithm flow 1 used for our process is
derived, from the work in [23]. The algorithm begins by
selecting a set of user devices (N=0,1,2,...,n) from the total
device set (M) and initializing an initial global model (W),
which is then passed to these devices. Training is performed
in parallel on these selected devices using their local data (P),
considering batch sizes (B), learning rate (η), and local epochs
(E). After training, the updated models (w) from these devices
are shared with the substation, where federated averaging
occurs for server aggregation, resulting in a global model (W).
The global model is then shared back with all the devices,
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Fig. 2: Federated learning setup for load forecasting.

Algorithm 1 Federated learning algorithm
Require: Total device set M , selected device set N , batch size B,

learning rate η, local epochs E
Ensure: Global model W

1: Initialization: Randomly initialize global model W
2: while not converged do
3: for each device n in selected device set N do
4: Retrieve local data P on device n
5: Train local model wn on data P for E epochs with batch

size B and learning rate η
6: Share local model wn with central server
7: end for
8: Aggregate models wn from all devices on a central server

using federated averaging
9: Update global model W as the average of all local models

wk

10: Share global model W with all devices
11: end while

which update their models accordingly, and the process is re-
peated until convergence is reached. By Convergence, we refer
to the point where no noticeable improvement in the global
loss function (GLF) occurs with increasing federated training
rounds, indicating that the GLF has reached a minimum.

Adopting the representation in [24] for our case, an
FL cluster with n clients communicating with the global
server(substation for our case), if each client has a k fixed
number of data points in its respective dataset, the input/output
relation for a given local dataset S for a client i can be
represented by the equation eq. 1. Here x and y represent the
input and output vectors, respectively.

Si = {(xi, yi)}ki
i=1 (1)

The learning process can hence be captured using the model
f(.; θ) that maps an input x to the predicted label y. Here, θ
represents the trainable parameter of the model f. Assuming
a loss function of L for this model capturing the error in the
prediction f(x; θ) given the true label y, the local objective of
the client i is given by the equation eq. 2 and the global server



objective in an FL setting can be represented by the equation
eq. 3.

L(θ;Si) =
1

ki

ki∑
i=1

l(f(xi; θ), yi) (2)

argmin
θ

L(θ) =
1

n

n∑
i=1

L(θ;Si) (3)

B. Performance Metrics
With errors varying according to household average con-

sumption level, MAE (calculated using eq. 4) and RMSE
(given by eq. 5) are not ideal metrics to accurately assess short-
term load forecasting at small energy consumption units. Mean
absolute percentage error (MAPE, given by eq. 6) provides a
more reliable measure by capturing the absolute percentage
deviation between predicted and actual values. Using MAPE
with MAE and RMSE allows for a comprehensive evalua-
tion and comparison of prediction accuracy independent of a
household’s average consumption.

MAE =
1

N

N∑
i=1

|X(i)− Y (i)| (4)

RMSE =

√√√√ 1

N

N∑
i=1

[X(i)− Y (i)]2 (5)

MAPE =
1

N

N∑
i=1

∣∣∣∣X(i)− Y (i)

X(i)

∣∣∣∣× 100 (6)

As before, in the case of equations eq. 4 to eq, 6, X
represents the actual value and Y represents the predicted
value, with N as the number of data points.

III. DISTRIBUTED LOAD FORECASTING
METHODOLOGY

For our simulation and testing, we utilized the smart meter
energy consumption dataset from London Households [22].
This dataset comprises energy consumption data recorded from
smart meters installed in 5,567 households across London.
The data covers the period from November 2011 to February
2014, with half-hourly energy consumption data, containing
four columns: a unique tag, tariff type (standard or dynamic
pricing), time-stamp, and half-hourly electric consumption (in
kWh).

First, we examined the heterogeneity of the consumption
data and analyzed it to understand fluctuations in the energy
consumption patterns of consumers across the year and to
determine any seasonal variations or long-term trends. Figure 3
illustrates the monthly total consumption trend for a random
household across the year, indicating that January, February,
and December tend to have higher consumption compared to
other months. Similarly, figure 4 shows the daily consump-
tion of one high-consumption consumer and one medium-
consumption consumer, capturing the significant variations
and heterogeneity present in the dataset. We use the average
consumption for each household across the entire dataset to
identify outliers with very high or very low average half-hourly
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Fig. 3: Energy profile yearly trend of a random household

Fig. 4: Comparison of daily consumption over a month: high
consumption household vs average consumption household

consumption. Based on our observations, households with
an average energy consumption per half-hourly (hh) interval
less than 0.09 kWh/hh (nearly unused) or greater than 1.35
kWh/hh are marked as outliers and filtered out of the dataset.
Eliminating these outliers reduces the number of households
from 5547 to 4672 and removes any bias that may be incurred
when training the model with the outlier data points.

A. Clustering of smart meter-based energy consumption data
Clustering the training data has shown to provide better

generalisability for deep learning models when used for load
prediction [7], [8]. With federated models, clustering is partic-
ularly effective as it allows clients to be organized into smaller
clusters based on similar consumption and their locality. This
also improves the aggregation phase in the substation where
local models from similarly performing households have a
better probability of achieving an unbiased aggregation to
arrive at the new global model. For our approach, we use
statistical information about energy consumption to organize
households into 18 groups using K-Means clustering. We use
mean energy consumption, median consumption, total energy
consumption, maximum recorded consumption, and minimum
recorded consumption parameters to guide the clustering pro-
cess, similar to the approach in [21]. Clustering also takes into
account the area locality for the grouping to ensure that they
can be grouped under a global server that serves this area (e.g.,
a substation). So, in our setup, each cluster would indicate an
area within London, comprising households of similar electric
consumption levels with a substation (global server), feeding
to all these households. Figure 5 illustrates our constructed
framework up to the cluster level.

B. Federated Training and Testing Data sets Creation
The entire dataset, indexed by household tags, is sub-

sequently partitioned into training and test data. For every
household, data from Nov 2011 to Feb 2013 was used for
training and Validation purposes, while, the data from Feb
2013 to Feb 2014, was used for testing purposes, thereby
achieving a 60:40 split between training and test data.
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1) Input Window and Output Prediction: To account for the
time-series nature of load forecasting, we use a sliding window
scheme to capture the short history of recent consumption
data, which forms the input to the deep learning model. For
our experiments, we evaluated different window sizes using
training error at a fixed number of epochs to arrive at a size of
336, which captures an entire week of consumption at a half-
hour resolution. We infer that by considering a longer time
span that includes weekdays and weekends, we can capture
and analyze the trends and patterns that emerge throughout a
complete week.

2) Model architecture and TensorFlow Federated Wrap-
pers: For building our training and inference flows (simula-
tion), we utilise the Python-based TensorFlow-Federated (TFF)
library and its associated frameworks. TFF wrapper converts
the windowed input/output data into a Python dictionary for
use with the TFF framework. For our evaluation, we simulate
the learning of each individual household and its aggregation
at the cluster using the TFF libraries. Unique tags associated
with each household are used to access individual data streams
and clusters during the training and evaluation phase.

For our model, we chose to evaluate feed-forward neural
networks for their simplicity and computational efficiency for
each of the clients. After evaluating multiple architectures, we
settled on a 4-layer model with 2 hidden layers. The model
follows [16,8,4,1] shape with rectified linear unit (ReLU)
activation functions at each layer. We used RMSE and MAE
as the loss functions and metrics for our training and all three
(RMSE, MAE and MAPE) for evaluation. The learning rate
was set to 0.01 at each client site. The final model architecture
has 5569 trainable parameters, making it ideal for training
and performing inference on low-cost microcontroller-based
computing nodes (like smart meters) while having sufficient
parameters to learn crucial patterns and trends in the data
stream.

IV. CASE STUDY
A. Case Settings

We use the following hyper-parameters for training the
model: batch size = 12, global server learning rate = 1 and
number of federated rounds = 20. We present a selection of
results from individual clusters representing the spectrum of
consumption levels that are available in the dataset in addition

to the aggregate performance across all clusters. For every
cluster, two types of households are selected for evaluating
our model performance:

1) Households that received all global model updates.
2) Households that did not receive some updates or all

updates during training.
This differentiation factors in non-i.i.d conditions that may
be present in a real-world condition. Additionally, within the
group of households that did not receive some updates, we
further divided them into inter-cluster examples, including
high-consumption and low-consumption examples for observ-
ing how the forecasting accuracy’s varies across different
households.

B. Results
Table I presents the RMSE values averaged across different

types of households within a specific cluster from our experi-
ments. It can be observed that the model offers better (average)
prediction performance for households that received all the
updates (i.i.d condition) compared to those that missed out on
some of the updates. Additionally, this demonstrates that in
the worse scenario when a house skip updates, the approach
is able to provide reasonably accurate predictions.

We also examined the performance across festive periods
where we observe significant differences in daily consumption
while analyzing the dataset. The prediction results around a
three-day window around Christmas from the 24th of Decem-
ber to the 26th of December is plotted in figure 6 for different
clusters. The general consumption data is well-aligned with the
model’s prediction, as can be seen from the figure across all
clusters. While the sudden peaks are not accurately predicted
by the model, the predicted consumption is on the lower side
than the actual consumption, making it a reliable baseline for
distribution system operators and grid operators.

1) Performance compared with Centralized Setup: We eval-
uate the use of our lightweight model in a purely central-
ized setup to see the effectiveness of distributed learning in
comparison to a global learning approach using a model of
similar complexity. For the centralized setup, we assume that
all consumption data is made available to the central server
and that all clients participate at a consistent rate (set to
3× higher) compared to our federated learning scheme. The
clustering approach is maintained in the centralized setup to
ensure fairness in both cases. Both setups use 20 rounds of
training - FL using training locally at the clients, while the
centralized model trains for 20 epochs at the central server.

TABLE I: Monthly load forecasting RMSE: comparison be-
tween different cluster 08 households

Month Client Type (RMSE)
Mod(All) High(Non-i.i.d) Low(Non-i.i.d)

January 0.0636 0.2507 0.0778
February 0.0633 0.2581 0.0665
March 0.0623 0.2875 0.0760
April 0.0544 0.1531 0.0797
May 0.0570 0.0866 0.0740
June 0.0621 0.0583 0.0752
July 0.0638 0.1690 0.7425

August 0.0662 0.2217 0.7119
September 0.0528 0.1417 0.0730

October 0.0611 0.1896 0.0695
November 0.0539 0.2505 0.0684
December 0.0650 0.2484 0.0787
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Fig. 6: Short-term daily forecasting (24th – 26th of December) across a selection of clusters

Figure 7 shows the average prediction error (RMSE) for the
entire year for a single cluster (cluster 04) across different
months. The results show that the federated model achieves
better performance at the same model complexity.

Fig. 7: RMSE of centralized vs federated prediction for cluster
04

2) Performance comparison against other research works:
We compare our load forecasting model with the federated
architecture used in [21], using average monthly RMSE across
various clusters. We include households with high, low and
moderate electric energy consumption. For our simulation, the
number of participating clients was set to be less than 50% of
the clients used in the competing method [21] for each cluster.
Although an increase in the number of participating nodes
does not guarantee improvement in prediction performance,
it should potentially lead to a better global model based on
the consumption profile of the additionally included nodes.
Additionally, the work in [21] uses an LSTM-based model
with 7505 parameters compared to our 4-layer feed-forward
model with only 5569 learnable parameters (and thus lower
communication costs during the model aggregation phase).

The table II) shows the results of our simulation capturing
the average monthly RMSE of the models across all clusters
over the entire year in comparison with the results reported
in [21]. Despite using 50% fewer participating nodes in

TABLE II: Comparison of average RMSE of all clusters
between our 4-layer feed-forward model and the LSTM-based
FL model in [21]

Month Our Proposed Model (RMSE) M. Savi Model (RMSE)
January 0.2053 0.1463
February 0.1626 0.153
March 0.2176 0.1535
April 0.1800 0.1345
May 0.1657 0.1304
June 0.1434 0.1259
July 0.1685 0.1057
August 0.1526 0.1106
September 0.1581 0.1302
October 0.1554 0.1335
November 0.1729 0.1471
December 0.1728 0.1328

TABLE III: Comparison of Participation Ratio, Number of
Rounds, and Average MAPE

Model Household Ratio Fed. Rounds Avg MAPE

Taik’s Model 36% 5 34.14%
Our Proposed Model 10.50% 20 22.01%

each cluster and 20% fewer computational requirements for
the local model, our model is able to achieve an average
RMSE of 0.17 compared to 0.14 of the LSTM model. While
RMSE does not fully capture the prediction performance in
this case, we believe that the trade-off is in line with the
lower computational complexity, communication overhead and
participation ratio in the network.

We also compare our results against the work in [25], where
the model uses a participation ratio of 36% compared to the
10% in our method. Similar to the previous work, the work
in [25] also uses an LSTM-based model with customized
local model improvement at each round, with only 5 federated
rounds compared to our 20. Our results, shown in table III,
show that our approach achieves significantly better average
prediction accuracy (in terms of MAPE) compared to the
results reported in [25]. Additionally, we observe that reducing
the number of federated rounds from 20 to 5 increases the
average error across all clusters to increase by nearly 4% in
our case, which is still better than the results achieved by [25].



3) Energy consumption of the model on an IoT platform:
To quantify the energy overhead in performing model training
and inference at each client (smart meter), we implement the
training and inference on an Arduino Uno R4 WiFi platform,
that uses an 8-bit processor. The model was coded using
Ardiuno C and compiled to the device using the standard
compiler flow. For evaluation, we simulate the condition that
the model is training on the data for one day and predicted the
half-hourly consumption for the following day, with the output
transferred via serial port to a standard laptop. To measure
the energy consumed, we monitor the power consumed by
the Arduino device using a calibrated USB energy monitor
and record the consumption of the model under idle, training
and prediction phases. We observed that the model consumes
50 mWh (milliwatt-hour) when averaged over the entire day
on top of the idle power consumption of 440 mWh, when
performing training and inference, resulting in an overhead
of 11% on the Arduino platform. The result indicates that
integration of our model will not incur significant energy
consumption overhead in a similarly capable (or higher) smart
meter hardware platform, making our approach ideally suited
for this application.

V. CONCLUSION

In this work, we propose a federated learning-based ap-
proach for distributed load forecasting that uses a lightweight
fully connected neural network at its core and test it on
a real-world openly available energy consumption dataset.
By combining this lightweight model with clustering and
randomized client selection, we emulate real-world conditions
in an electric distribution grid. Our approach learns locally at
each client’s smart meter with only the model updates passed
up to the central entity, reducing the privacy risks associated
with granular aggregation of energy consumption data. Our
simulations show that the light-weight model when combined
with clustering is able to generate accurate load forecasting,
and provides comparable results against competing FL-based
load prediction approaches, trading off inference accuracy
(≈21.4% higher RMSE) with model complexity (≈25.8%
lower parameters) in one case, while achieving ≈35.6% better
aggregate MAPE in another. We also show that training and
inference using our model on an Arduino platform incurs
an energy overhead of only 50 mWh when averaged over
multiple cycles, which is a fraction of the standalone power
consumption for the platform, making it ideally suited for load
forecasting in a decentralized setting. In the future, we aim
to show that decentralized learning can aid in improving the
smart-grids stability and resilence without requiring aggrega-
tion of privacy-sensitive data.
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