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Abstract—Rising connectivity in vehicles is enabling new capa-
bilities like connected autonomous driving and advanced driver
assistance systems (ADAS) for improving the safety and reliability
of next-generation vehicles. This increased access to in-vehicle
functions compromises critical capabilities that use legacy in-
vehicle networks like Controller Area Network (CAN), which
has no inherent security or authentication mechanism. Intrusion
detection and mitigation approaches, particularly using machine
learning models, have shown promising results in detecting
multiple attack vectors in CAN through their ability to generalise
to new vectors. However, most deployments require dedicated
computing units like GPUs to perform line-rate detection,
consuming much higher power. In this paper, we present a
lightweight multi-attack quantised machine learning model that
is deployed using Xilinx’s Deep Learning Processing Unit IP on
a Zynq Ultrascale+ (XCZU3EG) FPGA, which is trained and
validated using the public CAN Intrusion Detection dataset. The
quantised model detects denial of service and fuzzing attacks
with an accuracy of above 99% and a false positive rate of
0.07%, which are comparable to the state-of-the-art techniques
in the literature. The Intrusion Detection System (IDS) execution
consumes just 2.0 W with software tasks running on the ECU and
achieves a 25% reduction in per-message processing latency over
the state-of-the-art implementations. This deployment allows the
ECU function to coexist with the IDS with minimal changes to
the tasks, making it ideal for real-time IDS in in-vehicle systems.

Index Terms—Controller Area Network, Machine Learning,
FPGA

I. INTRODUCTION & RELATED WORKS

Most high-end vehicles today integrate over 50 electronic
computing units (ECUs) interconnected through different net-
work standards for incorporating safety-critical, comfort and
automation capabilities in a cost and energy-efficient manner.
Controller Area Network (CAN) and its variants continue
to be the most widely used network protocol in automotive
electric/electronic systems owing to their low cost, flexibility,
and robustness. CAN is a broadcast protocol with implicit
priority using the ID field and support for multiple data rates
(from 125 Kbps to 1 Mbps), allowing their use in critical and
non-critical network segments in the vehicle [1], [2]. CAN
(and most other automotive networks) do not have native
support for message (sender) authentication or encryption;
however, due to the physical localization of earlier vehicular
systems and the design of (critical) applications as silos (pari-
tioned into domains), integrating them over unprotected CAN
networks was considered secure. With increasing connectivity
enforcing bridged access between previously siloed domains,
security gaps and vulnerabilities in these networks have been
exposed further through numerous exploits [3]. For instance,
passive eavesdropping attacks enabled through malicious code

or aftermarket extensions can lead to a complete loss of
user privacy [4], while more enhanced attacks like Denial of
Service (DoS) can fully disrupt normal vehicle functioning.

Intrusion detection systems (IDSs) for high-speed CAN
networks address these challenges, often leveraging hardware
accelerators to analyse and identify attacks like DoS in real-
time [5]. Early rule-based IDS schemes used inherent network
and message properties like message frequency, voltage pro-
files of ECUs, or timing of remote request frames as features
to detect abnormal operations [6]–[8]. However, the rule-based
approach limits their ability to scale and generalise towards
new attack vectors, while also incurring incremental storage
and computational overheads for new attack modes/vectors.
More recently, both classical and deep-learning based IDSs
have proved extremely efficient in detecting CAN bus at-
tacks [9]–[13]. In [12], the authors use a deep-convolutional
neural network (CNN) based on inception net architecture
as an IDS taking the CAN IDs as the input features to
achieve an average detection accuracy of 99% on both the
DoS and Fuzzing attacks. Alternative network architectures
like Generational Adversarial Networks (GAN) [14], temporal
convolutional networks with global attention [15] and a
combination of CNN and long short-term memory (LSTM)
as an unsupervised learning network [16] have been explored
in the literature to improve detection accuracy, using only
CAN IDs or complete data frame as inputs. Most such models
rely on GPU acceleration to deploy the IDS at an ECU.
Dedicated IDS-ECUs have also been proposed, where stacked
models are executed on a Raspberry Pi-3 device that acts as
an IDS-ECU [17]. An intrusion prevention ECU has also been
proposed where an anomaly detection algorithm is executed
on a Raspberry Pi device (acting as a standalone ECU) to
detect fuzzing and spoofing attacks [18]. This approach drops
any suspected messages from the network by triggering an
error response on the bus; however, this can cause a large
number of critical messages to be affected in case of false
positives or DoS attacks. In all the above cases, the scalable
and generalisable nature of ML models are deployed through
specialised accelerators (GPUs) or dedicated ECUs and can
adapt to new threats post-deployment, making them more
attractive than traditional rule-based methods.

An alternative architecture approach is through the use of
hybrid FPGAs as ECUs, allowing a machine learning accel-
erator to be closely coupled with the application(s) running
on the ECU for a software-controlled hardware IDS. Hybrid
FPGA devices like Zynq Ultrascale+ combine automotive-
grade ARM processors and a large programmable fabric



closely integrated on the same die, allowing custom machine
learning accelerators to be integrated on the same die. Prior
research has explored FPGA-based ECUs that enable custom
accelerators and specialised network capabilities to be tightly
integrated as a system-on-chip module while maintaining
full AUTOSAR compliance [19] and for the acceleration of
complex algorithms like advanced driving-assistance system
(ADAS) using network interface extensions to augment ECU
functionality and security [20]. Machine learning on hybrid
FPGAs has also shown tremendous promise in applying deep
learning in multiple applications through both vendor tool
flows and academic efforts [21]–[27].

In this paper, we present a lightweight deep-learning model
for multi-attack (MA) intrusion detection and its deployment
using a hybrid-FPGA based ECU architecture modelling a
standard software-controlled accelerator framework in ECUs.
Our deep-CNN model is quantised and integrated using Xil-
inx’s Vitis-AI flow using a Deep-learning Processing Unit
(DPU) accelerator IP which is controlled through Python APIs
for our test cases [28]. We use an Ultra96-V2 board as a
prototype ECU platform which uses a ZynqMP ZU3EG device
running Linux on the ARM cores with the PYNQ libraries.
Our model is trained to simultaneously detect DoS and fuzzing
attacks using the public CAN attack dataset that is widely
used in literature. Our tests show that the tightly coupled IDS
achieves comparable detection accuracy as the state-of-the-art
detection accuracy with 25.08% reduction in the per-message
processing latency over state-of-the-art Raspberry Pi based
approach while consuming just 2.0 W in operation. We believe
that the proposed IDS model and its deployment architecture
will pave the way for seamless integration of generalised IDS
in future vehicular network architectures.

II. SYSTEM ARCHITECTURE

A. Hybrid-FPGA based IDS capable ECU
Figure 1 shows an overview of the proposed hybrid-

FPGA based distributed ECU architecture on a Xilinx Zynq
Ultrascale+ device. The Zynq Ultrascale+ device integrates
a quad-core ARM processor and a dual-core ARM real-
time core within the processing system (PS) section of the
device, along with integrated peripherals and interfaces. The
programmable logic (PL) section of the device enables the
addition of specialised custom logic blocks or accelerators
that can be accessed using the Advanced eXtensible Interface
(AXI) protocol from the PS. In this architecture, standard ECU
function(s) are mapped as software tasks onto the ARM cores
on the PS, on top of a standard operating system like linux or
a real-time operating system. The operating system provides
relevant drivers and APIs for accessing the PS peripherals and
the PL accelerators, abstracting away low-level details of these
blocks to create an AUTOSAR compliant architecture [19].

In our approach, we propose to use the integrated CAN
interface on the PS to handle the interfacing of ECU to the
CAN bus, as shown in Figure 1. Any received packets at the
interface are read by the software tasks on the PS and further
processed based on the ECU’s task specification. In tandem,
the IDS task extracts relevant packet feature information from
the received packet and forwards it to the IDS accelerator
through the integrated APIs. For this evaluation, we have
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Fig. 1: Proposed system architecture of the IDS-ECU. The ML
model is accelerated on the PL part of the FPGA device.

used the off-the-shelf DPU accelerator as the IDS inference
engine, which executes our TensorFlow ML model. DPU is an
instruction-based array of programmable processing engines
(PEs) for accelerating deep-learning inference on FPGAs.
DPU is instantiated as a memory-mapped IP, by configuring
the number of PEs and associated resources for configurable
levels of parallelism based on resources available on the target
FPGA. The Vitis AI design flow compiles the TensorFlow
model to executable instructions for the DPU’s PE. Standard
Vitis AI Runtime (VART) APIs are used to configure and
communicate with the DPU-based IDS engine. The model
uses interrupts to indicate the completion of tasks to the PS,
allowing the software tasks to run in a non-blocking fashion.
This approach allows for seamless integration of the IDS API
calls with the other event/time-triggered tasks to be executed
by the ECU. For high-performance networks like Automotive
Ethernet, the IDS model can be configured to directly read
the packets from the interface (also in PL), eliminating the
bottleneck caused by the software-based data movement. In
this case, the IDS task would enable the accelerator operation
at the startup phase of the network and would be interrupted
only when an anomaly is observed in the network traffic.

B. Dataset & Training

We use the CAR Hacking dataset for training and testing
our model [12], [29]. The dataset provides a labelled set of
normal and attack messages which were captured via the
Onboard Diagnostic (OBD) port in an actual vehicle, with
attack messages injected in real-time. The dataset includes
generalised DoS and Fuzzing message injections (as well as
other targeted attacks like gear-ECU spoofing) allowing us to
validate the detection accuracy across these different attacks.
DoS attacks flood the bus with a higher priority message
when injected while a fuzzing attack transmits messages with
random IDs and payloads at random intervals to disrupt the



TABLE I: An extract from the open Car hacking dataset which
is used for our testing and evaluation.

Time ID DLC Data

. . .
1478198376.389427 0316 8 05,21,68,09,21,21,00,6f
1478198376.389636 018f 8 fe,5b,00,00,00,3c,00,00
1478198376.389864 0260 8 19,21,22,30,08,8e,6d,3a
. . .

normal flow of messages. An extract from the dataset is shown
in table I, showing the CAN ID (ID field), control field, data
length code (DLC) and the actual data segment. We ignored
targeted attacks in the dataset since they are modelled by a
constant message sequence (specific ID and payload) and are
not generalisable to other ECUs.

As our input feature, we use a window approach to capture
adjacent sequences of CAN messages, which are fed as
input to the ML model to capture the correlation between
messages under different operating conditions. Through design
space exploration, we observed that a timeseries window of 4
successive CAN-IDs provided optimal performance and was
hence chosen for our implementation. The dataset is pre-
processed to mimic byte-wide binary CAN data which can
be read from the CAN interface controller. The ID bits are
extracted and stacked to form a block shape of {4,11}, which
is then time-spliced to generate the {2,2,11} dimension that
is fed as input to the model [13]. During implementation, this
can be mapped as a FIFO style buffer stacking sequential CAN
IDs from the CAN controller (in PL) to form the input tensor
for the IDS.

To train the model, we used the adam optimizer with the
binary cross-entropy loss function. The learning rate was set at
0.0001 during the entire training process to reduce any perfor-
mance degradation when quantising the network post-training
as observed in [30]. We first train the model on DoS attack and
ensure optimal performance; subsequently, this trained model
is trained on the fuzzing dataset to improve generalisation
across the two attack modes through inductive transfer. This
model file is then tested in both the DoS & Fuzzing attacks to
ensure there was no performance degradation. The model saves
intermediate results at each epoch allowing us to progressively
track and integrate early stopping in case of a significant drop
in the accuracy. The model was trained for 25 epochs with
a batch size of 64 and the dataset was split as 80:15:5 for
training, validation and testing respectively for both attacks
to allow a sufficient amount of information for training and
fine-tuning the quantised network.

C. Proposed Model
To determine the model configuration with minimal com-

putational complexity, we explored different network architec-
tures that combine the layers supported by the Vitis-AI flow.
Each model was defined in TensorFlow (TF) using standard TF
functions and nodes. We evaluated different models comparing
their inference latency and detection accuracy across both at-
tack datasets when mapped using the Vitis-AI to determine our
lightweight network model to implement. Our chosen model is
composed of 5 Conv2D layers implemented with 40, 80, 120,
160 & 200 filters at each layer, each filter having a dimension
of 3x3. This is followed by a Flatten and 2 Dense layers

TABLE II: Inference accuracy metrics of the proposed MA-
QCNN model, pre and post quantisation on the two attacks.

Attack Model Precision Recall F1 FPR FNR

DoS Pre-Q 0.9992 1 0.9996 0.04% 0%
MA-QCNN 0.9992 1 0.9996 0.04% 0%

Fuzzy Pre-Q 0.9966 0.9875 0.992 0.1% 1.25%
MA-QCNN 0.9966 0.9878 0.9922 0.1% 1.22%

implemented with {32, 1} units respectively. The final dense
layer consists of sigmoid activation to predict the probability
of an attack message. In addition, batch normalisation and
dropout layers were used between the convolutional layers to
prevent overfitting and to improve learning efficiency during
the inductive training phase.

III. DEPLOYMENT AND EXPERIMENTAL RESULTS

Once the model was chosen, it was trained using an Nvidia
RTX A6000 GPU using the training split of the dataset(s),
starting with the DoS attacks and subsequently moving to the
fuzzing attacks. The pre-quantisation accuracy is then verified
using the test split of the dataset and is shown in Table II.
The exported model file is passed to the Vitis-AI tool flow
which quantises the model, weights, biases, and activations
to 8-bit precision, followed by an optional post-quantisation
fine-tuning step to account for any performance degradation
from the quantisation. In our case, the post-quantisation fine-
tuned model performance showed no visible degradation in
inference performance measuring using Precision, Recall, F1
score, False Negative Rates (FNR) & False Positive Rate
(FPR) metrics, as shown in Table II.

The model is then packaged as an ‘xmodel’ file which
can be executed using a DPU accelerator in the PL with the
VART libraries installed on the OS running on the PS. For our
experiments, we use a petalinux based image for the Ultra-
96 V2 board on which the PYNQ and VART libraries were
installed to use the standard VART/PYNQ APIs. Subsequently,
the bitstream corresponding to the DPU accelerator is loaded
to the PL from the OS (as an overlay). For our experiments,
we use the B1152 DPU for most of the performance mea-
surements (unless specified) with the DPU using a 150 MHz
interface clock and 300 MHz DSP core clock.

We compare our model performance in terms of inference
accuracy metrics and processing latency with the state-of-the-
art IDSs and IPSs described in the literature. Performance
metrics such as Precision, Recall, F1 score, and FNR are
used to compare the inference accuracy of other models where
reported and use per-message latency to capture the true
latency of the detection approach starting from the arrival
of a new CAN message at the interface. In case of schemes
where inference is performed on a block of CAN messages,
this is captured using the block size in the comparison. We
further determine the power consumption of the ECU while
executing the IDS and compare it against the execution of the
full-precision model on a GPU. Note that none of the ML-
based IDS approaches in the literature report the actual power
consumption of their implementations; however, since most
models are significantly more complex than our lightweight
model, we assume that our GPU implementation would be a
good baseline for comparison.



TABLE III: Confusion matrix capturing the classification
results of the MA-QCNN (on DPU).

Attack Message Type Predicted Normal Predicted Attack

DoS True Normal 33282 13
True Attack 0 16705

Fuzzy True Normal 38784 38
True Attack 136 11042

TABLE IV: Accuracy metric comparison (%) of our quantised
FPGA accelerator (MA-QCNN) against the reported literature.

Attack Model Precision Recall F1 FNR

DoS

GIDS [14] 96.8 99.6 98.1 -
DCNN [12] 100 99.89 99.95 0.13
MLIDS [31] 99.9 100 99.9 -
NovelADS [16] 99.97 99.91 99.94 -
TCAN-IDS [15] 100 99.97 99.98 -
iForest [18] - - - -
MA-QCNN (DPU) 99.92 100 99.96 0

Fuzzing

GIDS [14] 97.3 99.5 98.3 -
DCNN [12] 99.95 99.65 99.80 0.5
MLIDS [31] 99.9 99.9 99.9 -
NovelADS [16] 99.99 100 100 -
TCAN-IDS [15] 99.96 99.89 99.22 -
iForest [18] 95.07 99.93 97.44 -
MA-QCNN (DPU) 99.66 98.78 99.22 1.22

A. Inference Accuracy

Table IV compares the proposed MA-QCNN with the
state-of-the-art approaches discussed in the research literature:
GIDS [14], DCNN [12], iForest [18], MTH-IDS [17], TCAN-
IDS [15] & NovelADS [16]. In the case of MTH-IDS, the
authors only report an average accuracy, precision & recall
of 99% across all attacks which is identical to our model on
the three metrics. In case of the DoS attack, our quantised
hardware accelerator performs almost identical to the DCNN,
TCAN-IDS, NovelADS, MLIDS across all metrics and has
superior performance than GIDS across all metrics. In case
of the fuzzing attack, we observe that DCNN, MLIDS &
NovelADS perform marginally better, with 0.6%, 0.7% &
0.8% better F1 scores respectively. Our model is almost
identical to TCAN-IDS in case of fuzzing attacks and offers
a marginal improvement over iForest and GIDS by 1.7%
and 0.9% respectively (F1 scores). Note that in case of
competing techniques, the models are trained afresh for each
attack, whereas our model uses an induced learning approach
during training and hence, uses the same weights, biases and
activation values for both attacks.

Table III shows the confusion matrix of MA-QCNN on the
two attacks. We also plot the receiver operating characteristic
(ROC) curve for the two attacks when using our model on the
Ultra-96 V2, which is shown in Figure 2, and further determine
the area under curve (AUC) values for our model based on
the test datasets. We observe that our model achieves an AUC
value >0.99 in both attacks with a slightly lower performance
in the fuzzing attack. We believe that this could be improved
by fine-tuning the training and post-quantisation tuning steps.

B. Latency, Power consumption & Resource utilisation

We measure the cold-start setup time of IDS to quantify
the time from power on to the model being ready. This
is an important consideration since many attacks could be
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Fig. 2: ROC curve of the MA-QCNN on the two attacks.

initiated during the startup phase of the network and ECUs.
In case of our test platform, we observe this cold-start latency
as 8 seconds when averaged across multiple runs. It should
be noted that our test platform uses a slower boot device
(SD image) and full Linux OS, whereas typical ECUs rely
on non-volatile flash memory and real-time operating system
which could reduce the cold-start latency by up to 6×. Next,
we evaluate the processing latency of the inference datapath
from the arrival of a new message and compare it against
competing approaches in the literature. As mentioned before,
some approaches perform block-based detection and hence
require the block of messages to be available before it is
fed as input to the inference engine. This reduces average
inference latency per message leveraging the parallelism on
the GPUs. However, accumulating 64 messages (for example)
consumes nearly 8.3 ms on a 1 Mbps CAN network with 8-
byte messages, which should be factored into their worst-
case detection latency when averaging. The results are shown
in table V, also capturing the execution platform and the
block size in case of block-based inference. We observe the
lightweight model on our approach takes 0.43 ms from the
arrival of a message from the CAN interface, when measuring
the processing time to the arrival of the last message of the
block, achieving a 1.3x speedup over state-of-the-art CAN
IDSs. Finally, our approach does incur additional latency due
to message looping through the ECU, and could be reduced
further using a CAN interface in the PL feeding the DPU
through a FIFO. Also, on a more capable hybrid FPGA, a
larger DPU could be configured to have multiple execution
units and/or multiple execution threads to reduce latency
further for higher speed CAN networks at the expense of
slightly higher power consumption and device cost.

We also measure the power consumption of the IDS-ECU
while performing inference, using the PYNQ-PMBus package
to monitor the power rails directly. All power measurements
are averaged over 100 inference runs, each evaluating the
test set lasting nearly 10 seconds. We observe that the Ultra-
96 ECU consumes 2 W when the CAN messages are been
analysed using the DPU block on the PL. In comparison,
our lightweight floating-point model running on the A6000
consumes 54 W while performing inference at similar CAN
data rates, which is 27× higher than the entire IDS-ECU on the
Ultra-96 device. Other IDS implementations in the literature
do not report power measurements; however, our lightweight
model on the GPU should be a good baseline and more
complex models discussed in the literature should consume
higher power during inference on GPUs. Table VI shows the
resource utilisation on the PL, with the design consuming



TABLE V: Per-message latency comparison against state of
the art IDSs (GPU/Raspberry Pi) reported in literature.

Models Latency Frames Platform

MLIDS 275 ms per CAN frame GTX Titan X
NovelADS 128.7 ms 100 CAN frames Jetson Nano
GIDS 5.89 ms 64 CAN frames GTX 1080
DCNN 5 ms 29 CAN frames Tesla K80
TCAN-IDS 3.4 ms 64 CAN frames Jetson AGX
MTH-IDS [17] 0.574 ms per CAN frame Raspberry Pi 3
MA-QCNN (DPU) 0.43 ms per CAN frame Zynq FPGA

TABLE VI: Resource utilization breakdown for PL Accelera-
tor of our proposed CAN IDS (XCZU3EG).

Node LUT FF BRAM DSP

DPU 30726 48400 123 164

Overall 32648 51347 123 164
(% usage) (46.2%) (36.3%) (56.9%) (45.5%)

45% DSP blocks and 57% BRAMs on the XCZU3EG device,
leaving sufficient resources for other custom logic. Thus,
our IDS-ECU on a hybrid FPGA like an Ultra-96 device
offers an ideal mix of detection accuracy, latency, power
consumption, while offering software-driven control of IDS
and seamless GPU-like deployment with minimal change to
the ECU application, making it an ideal choice for in-vehicle
deployment.

IV. CONCLUSION

In this paper, we present a lightweight multi-attack ma-
chine learning model integrated as an IDS accelerator on a
hybrid FPGA-based ECU architecture that can successfully
detect multiple attack models on a CAN bus. The proposed
lightweight model has comparable detection performance (al-
most identical or within 1%) to the state of the art complex
machine learning models for detecting DoS and fuzzing at-
tacks, almost all of which require dedicated GPU acceleration
or dedicated IDS-ECUs for line-rate detection. Our model
also achieves a 25% reduction in latency of processing per
message while consuming less than 2 W of active power
when executing the model. We believe that the proposed
learning model and integration approach can be adapted for
emerging in-vehicle networks like Automotive Ethernet and
also for enabling a distributed intrusion detection framework
for vehicular networks.
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