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ABSTRACT

Image to Image (I2I) transformations have been an integral part of video processing workflows with applications
in Image Synthesis for Virtual Productions, Segmentation, and Matting, among others. Over the years, deep
learning-based approaches have been enabling new methods and tools for automating parts of the processing
pipeline, reducing the human effort involved in post-production workflows. These compute-intensive models
are often accelerated through on-premise or in-cloud GPU instances to improve the responsiveness and latency
while expending large amounts of energy in performing these complex transformations. In this work, we present
an approach for optimising the energy efficiency of I2I deep-learning models using quantised neural networks
accelerated on a server-style FPGA. We use deep learning-based alpha background matting as the I2I application
which is implemented using a U-Net conditional Generative Adversarial Network deep learning model. The model
is trained and quantised using Vitis-AI flow from AMD/Xilinx and deployed on a data centre class Alveo U50
FPGA device. Our results show that the quantised model on the FPGA achieves a 1.14× higher throughput
for inference acceleration while consuming 11× lower energy consumption per inference when compared to a
GPU-accelerated version of the model on a 3080-Ti, while generating nearly identical results with an average
IoU > 0.95 across multiple user images at 1080p and 4K resolutions. Additionally, offloads to the FPGA device
can be seamlessly integrated into widely used motion picture tools like NUKE with minimal effort. With most
cloud providers integrating heterogenous platforms (including FPGAs) into systems, we envision that this work
paves the way for more efficient utilisation of custom precision deep-learning models and FPGA acceleration in
deep learning-based motion picture workflows.
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1. INTRODUCTION

Motion picture workflows, like many other image-processing tasks, can be represented as a set of tasks that
translate an input image (or video) sequence to a corresponding set of output sequences. The specialised nature
of individual operators, such as image synthesis or segmentation has traditionally been tackled by often separate
and specific algorithms to achieve optimal performance. The generalised nature of the transformation, from
input pixel to output pixel, has led to the development and wider adoption of deep-learning-based machines
and algorithms in motion picture workflows. Deep-learning tools, such as CopyCat1 built into Foundry’s motion
picture software suite Nuke,2 aid in reducing the amount of human effort in data-intensive tasks in motion picture
workflows such as interactive segmentation.3 With many commercial video production reportedly generating
several terabytes of data each day,4 such reduction can have a cumulative positive impact on the energy consumed
over the production phase. Compute-intensive deep-learning models are often accelerated by Graphics Processing
Units in video processing workflows, often deployed in server environments specialised for rendering tasks.5

The use of off-the-shelf GPU accelerators is driven by the software-driven video processing workflow6 and the
native support for GPU offload offered by industry-standard video processing tools such as Foundry’s Nuke2

or Autodesk’s FLAME. The massively increasing use of GPUs for existing DL solutions in such workflows is
expected to present a significant multiplier growth in energy consumed by post-production tasks.7

In contrast, tailoring a circuits datapath to meet the needs of video processing tasks using application-specific
integrated circuits (ASICs) and field programmable gate arrays (FPGAs) has shown to provide superior energy
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efficiency over CPUs and GPUs.8 Specifically, FPGA-based deep-learning inference accelerators use custom
micro-architectures to reduce control (logic) overheads combined with circuit and algorithmic optimisations such
as quantisation and pruning to achieve similar inference accuracy at a fraction of the energy consumption.9

Cloud providers have integrated FPGAs into their hardware resources to allow clients to lower the costs and
energy consumption of their deep-learning models using custom-precision accelerators. However, the motion
picture industry is yet to widely adopt FPGA-based deep-learning inference accelerators for their workflows to
take advantage of the efficiency benefits it offers.

In this paper, we present a quantised deep learning FPGA accelerator and its seamless integration within
a motion picture workflow, using Foundry’s Nuke as the software platform. We use deep-learning-based alpha
matting as the case study and use the pix2pix10 network, a U-Net based conditional generative adversarial
network (C-GAN), as the baseline deep learning model. The main contributions of this paper are

• A quantised pix2pix CGAN network and training flow for accelerating alpha background matting task.

• A network function-based offload from Nuke to the FPGA accelerator that implements the quantised
pix2pix network.

• Analysis of the inference performance and energy consumption of the custom precision FPGA-based accel-
erator in comparison to standard GPU offload using an Nvidia 3080-Ti as the GPU accelerator.

We show that the model can be trained, quantised and optimised using off-the-shelf Pytorch and Vitis-AI tools
to run on Xilinx’s deep-learning processing unit (DPU) accelerator IP. A datacentre class Alveo U50 device from
AMD is used to deploy the model, which talks to Nuke over a (virtual) network interface function, mimicking a
network-connected accelerator in a cloud rendering station. Our results show that the quantised pix2pix model
deployed on the Alveo U50 generates highly accurate mattes with an average IoU of >0.95 across multiple image
sets, achieves 1.14× higher throughput and consumes 11× less energy per inference than the GPU-accelerated
pix2pix, while still being invoked from within a native Nuke node. We use the openly available VideoMatte 240K
dataset for training, validation and testing our model.11

2. RELATED WORKS

The ever-rising amount of image and video data generated and processed by post-production workflows is in-
creasing the energy utilisation and carbon footprint of the media industry.12 Initial work has been done towards
analysing and quantifying the energy consumption of parts of the media processing pipeline, such as encoding
and decoding tasks13,14 and deep-learning inference accelerators in the cloud.15 Major post-production tasks
are executed on large-scale environments such as render farms, that are on-premise (modelled as a specialised
data centre) or integrated through cloud service providers. It is estimated that cloud-based workloads have more
than tripled between 2015 and 2022, and are dominated by data-driven computations such as deep learning
training and inference. Despite the focused efforts of the cloud providers to improve their energy consumption
by consistently adopting the most efficient computational resources (CPUs, GPUs, FPGAs and other specialised
silicon accelerators) and network infrastructure, their energy usage has increased between 20 to 70% in the same
period.16 The increasing use of deep learning in motion picture workflows could significantly increase this energy
consumption if relying on GPU and CPU acceleration.

Motion picture workflows predominantly use software solutions such as Foundry’s Nuke2 with many tools and
plugins that can be integrated into a single processing pipeline. Hence, any custom accelerator built for motion
picture tools or plugins should seamlessly integrate with such software programs. GPU-based acceleration has
thus become the standard scheme for motion picture tools. Nuke’s own deep-learning plugin, CopyCat,1 is able
to learn transformations from a small subset of (training) frames and be used to automatically replicate the
effect for long sequences, offloading the inference to a GPU if available. In this case, the training task will
overfit the model to a singular specific transformation based on a small training set with low variation, with the
effect being applied to large amounts of data. Hence, such transformations will consume more energy during
the inference (applying the effect) compared to generalised deep learning where the training is performed over
a significant chunk of the data. This key distinction makes specialised inference accelerators for motion picture



I2I tasks more relevant. Deep learning inference using custom accelerators on FPGAs has shown to outperform
inference on GPUs both in terms of throughput and energy efficiency across many application domains.17,18

Custom inference engines on FPGAs make extensive use of operator-level optimisations and compact data types,
with weights and activations mapped using custom precision representations (8-bits to as low as 1-bit).17,19

Algorithmic optimisations to training and post-training fine-tuning of quantised deep learning models enable
these inference accelerators on FPGAs to have limited impact on classification accuracy on datasets such as
ImageNet,20 MNIST21 and SVHN.22 However, the effect of quantisation on I2I transformations is relatively
unexplored. Given the recent improvements in deep-learning-based I2I transformations,23,24 it can be inferred
that their application in motion picture tools is likely to increase in the near future.

2.1 Network models for I2I transformation

Convolutional neural network (CNN) continues to be the common workhorse model behind a wide range of
applications in the area of image classification and prediction. Within the application setting, the training
process causes the CNN to learn to minimise a specific loss function that is related to the transformation to
be performed by the function. While designing effective loss functions for classification problems are easier,
determining optimal loss function for I2I transformations are non-trivial and requires expertise.25 Generative
adversarial networks (GANs)26,27 are a class of DNNs that learn to generate new data with similar statistical
properties as the training dataset, with the training process minimising the deviation in the properties. By
learning and adapting to the training data, GANs can be applied to a number of I2I transformations that would
otherwise require specialised loss functions to learn the transformations. Conditional GANs (cGANs)28 attach
additional information to control and direct the data output generated by an unconstrained GAN model to
mimic specific transformations more accurately, making them more suited for I2I transformations. Research has
shown that conditioning can be performed on class labels,29 part of data30 or data from different modalities.
When conditioned with images, these models have been used for image prediction,31 future frame predictions32

and for generalisable I2I transformations.10 We build on the pix2pix network10 in this work to show that I2I
transformations in motion picture workflows can be efficiently accelerated on FPGAs and seamlessly integrated
with the software tools.

2.2 Image matting

Image matting refers to the process of extracting the alpha matte that segments objects in the foreground from
the background. Segmentation is a fast and efficient way to achieve this separation with many notable works
such as Mask RCNN,33 DeepLabV3+34 and highly accurate interactive segmentation,3 among others. Matting
methods overcome the boundary artefacts generated by segmentation schemes, especially at large resolutions.
Trimap-based methods35–37 rely on manual annotation and learn to extract the alpha matte in the unannotated
regions; however, the quality of the trimap impacts the performance of these methods. Approaches to determine
alpha matte directly from the image (without a trimap) have also been proposed.38 Their limited generalisability
can be overcome by capturing additional information on the background.39 This work builds on knowledge of
the background image to extract alpha matte of HD and 4K sequences using the pix2pix network as a motion
picture task case study.

2.3 Accelerating deep-learning at large scale on FPGAs

FPGA vendors have developed specialised families of products, design tools and integration flows for targeting
large data problems that are typically executed in data centre scale settings. The AMD Alveo40 family of data
centre accelerator cards offer logic-dense FPGA fabric that is tightly coupled with high-bandwidth memory (on-
chip and off-chip), interface resources (PCIe, 100GbE) and management engines (scheduler), allowing system
designers to develop and integrate accelerators for offloading data-intensive tasks within a client-server model.
For deep-learning workloads, the Vitis-AI development stack41 from AMD takes high-level model descriptions in
PyTorch or TensorFlow and compiles them to executables that can be run on their deep-learning processing unit
(DPU) IP cores, which are specialised engines for accelerating deep learning inference. DPUs can be seamlessly
deployed on data centre accelerators like the Alveo with optimisations to adapt to throughput, power consumption
and parallelism. Vitis-AI offers both Post-training Quantisation (PTQ) flow as well as a Quantisation-aware
Training (QAT) flow to allow designers to optimise their deep learning model for inference on the DPU.42 While



PTQ is faster and requires only a small number of training samples, the performance of the quantised model is
slightly inferior to the QAT flow. Other open-source tools such as FINN43 and LUTNET44 offer the ability to
design custom datapath accelerators and different quantisation levels (down to 1-bit) for deep learning inference;
however, their integration into motion picture workflows require low-level design and optimisation of interfaces
and drivers, making them less attractive for seamless integration across multiple tools and software stacks.

In this work, we target a smaller Alveo U50 data centre card as our acceleration platform and utilise the QAT
flow to minimise the accuracy loss incurred by quantisation. We show that our quantised pix2pix model on the
Alveo U50 is able to generate nearly identical transformations as the ground truth images from the dataset while
offering higher throughput and consuming a fraction of the energy when compared to accelerating pix2pix on
a GPU. Both models are invoked from within a Nuke graph with the data centre card interfaced over a virtual
network interface, mimicking a network-attached accelerator architecture in data centres.

3. SYSTEM ARCHITECTURE

3.1 UNet-Architecture

The U-Net architecture, first published in 2015, was aimed at medical segmentation and generated a class label
for each pixel in the image. The key enhancement in the architecture compared to traditional deep-learning
architectures was the idea of using feature reduction and expansion, as seen in Fig. 1, which mimics an encoder-
decoder pipeline (as shown in Fig. 2), allowing high-resolution features from the encoder to be concatenated
with decoder outputs for accurate classification. The authors used the ‘intersection over union’ (IoU) metric
to compare outputs to ground truth labels and achieved a 0.7756 IoU compared to the then state-of-the-art
method which achieved 0.46 IoU on the same dataset. Other authors have since refined the U-Net architecture
and applied them to other image-based tasks. The authors in 45 analyses over 350 papers between 2017 and
2020 that were published based on the U-Net architecture and its variations like 3D U-Nets, Attention U-Nets
and Residual U-Nets, clearly identifying the potential of U-Nets for image segmentation tasks as well as other
applications.

The pix2pix U-Net that we adopt in this work is a cGAN network aimed at performing generalisable I2I
translations and is released as an open-source repository. Community contributions to this repository have
expanded on the original form of the network to add new I2I applications such as style transforms and image
augmentation, among others. For this work, we train the pix2pix U-Net on the VideoMatte240K dataset11

for performing alpha background matting transformation on a series of 1080p and 4K image sequences. The
generator and the discriminator used in training are composed using blocks of Convolution-BatchNorm-RelU
layers deployed consecutively where the convolutions use 4x4 filters with a stride of 2. Given Ck is one such
block where K denotes the number of filters used, the encoder in generator comprises of 8 such blocks with
the configuration: C64-C128-C256-C512-C512-C512-C512-C512. The decoder comprises of 7 such blocks with
the configuration: C512-C512-C512-C512-C256-C128-C64. The convolutions in the encoder & decoder of the
generator consecutively downsample & upsample by a factor of 2 respectively. After the training process, we
discard the discriminator and use the generator for producing the high resolution output. The model is described
with standard PyTorch nodes.

3.2 Network Offload Plugin

The Nuke Machine Learning Plugin is a built-in tool designed by Foundry to enable the use of custom deep
learning architectures, represented in standard frameworks like Pytorch or Tensorflow. The plugin utilises GPU
offloads for inference when invoked within a motion picture pipeline within the Nuke processing workflow. For
integrating our custom deep learning model and accelerator, we adapt this flow to add support for offloading
to an FPGA-based accelerator, utilising a client to server TCP network connection. To achieve this, AMD’s
Vitis-AI runtime (VART) API calls are integrated with the Nuke processing workflow using a server-side plugin
to start an instance on the FPGA accelerator using this plugin by the client. This is modelled around Nuke’s
inbuilt support for GPU offload, allowing Nuke nodes to seamlessly interact with the ML server on the FPGA
accelerator, move data between the client and the server and initiate inference tasks on the server. This approach
also facilitates rapid integration of newer deep learning models on the server side with limited to no changes to
the original Nuke workflow on the client side. Additionally, since the client is not expecting the server to be
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hosted on the same machine, this approach can be easily scaled to interface multiple accelerators simultaneously,
if required.

The server side of the application is managed from within a Vitis-AI docker container on the server that
hosts the FPGA accelerator. The server application is a generic script that handles a TCP receive connection
and a parser to unpack the received data into a NumPy array format for processing by the machine learning
accelerator. Individual ‘runners’ are instantiated on the server side to move data between the server and the
DPU and to manage the inference execution over the PCIe interface. Figure 3 shows the overview of the client
(Nuke) and server (FPGA) integration architecture.
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Figure 3. The figure shows the high-level architecture of the client and the server of the proposed network plugin with
Nuke.

3.3 Dataset & Training

We use the VideoMatte240K dataset to train the pix2pix U-Net architecture for performing alpha matting and
to test its performance.11 The dataset is extracted from green screen stock footage and provides high-resolution



alpha matte and foreground video clips for 484 users, comprising 240,709 unique frames. The dataset provides
384 clips at 4K resolution while the remaining 100 are in HD (1080p) quality.

We trained & tested the network for 4 users in the dataset. Two users have frames in HD quality while the
other two users have frames at 4K resolution. For each user we used 57, 11 & 7 frames for training, validation,
and testing respectively, allocating a large section to training for efficient learning. Each frame is split into
patches of 256 x 256 (see sec. 3.3.1) leading to a final split of ∼ 20000, ∼ 4000 & ∼ 2500 patches for HD and ∼
34000, ∼ 6800 & ∼ 4300 patches for 4K resolution users for training, testing & validation respectively. A stride
of 64 is used to generate the overlapped patches to prevent the model from learning only the local properties
of these patches. During training, the foreground frames are fed as inputs to the model which is required to
construct the alpha matte output as shown in the figure 4. Vitis-AI framework provides two both a post-training
quantisation flow, (PTQ) where the model is quantised to INT8 precision after training at native precision and
a quantisation aware training (QAT) flow, where the model is trained with quantised INT8 precision (for the
inference pass). We explored both methods and found that the QAT flow enabled better model generalisation
on the dataset. For each user, we train the floating-point model using the standard PyTorch training framework
for 10 epochs. We used the adam optimizer with a learning rate set to 0.0002 and batch size of 1. The trained
model at the end of each epoch is exported as a checkpoint for use with the QAT flow. The optimal checkpoint
at the end of the floating point training is subsequently trained using the QAT flow, with 10 iterations within an
epoch to fine-tune the weights to reduce the accuracy loss that could be incurred by the quantisation of weights
and activations. A slower learning rate of 5× 10−8 was used for the QAT flow.

Ground Truth Matted Image

Figure 4. The image shows the input foreground images used to train the CQP2P network to produce alpha matte images.

3.3.1 Data Pre-Processing steps

The original pix2pix network uses image slices of 256x256 as its input. To use the high-resolution images in the
dataset, preprocessing is applied these images ahead of time to scale them to the nearest integer multiple of 256
across both dimensions, before unpacking them into 256x256 patches for the pix2pix network. Subsequently,
colour space conversion is applied to convert from the linear colour space used internally by Nuke to the sRGB
colour space46 using the prebuilt function in Nuke, using the relation:

Cin sRGB =

{
(1.055× C

1
2.4

in linear)− 0.055 Cin linear > 0.0031308

Cin linear × 12.92 else
,C ∈ {R,G ,B} (1)

The colour space conversion is applied to each unpacked patch of the input image, which maps [0, 1] −→ [0, 1].
Subsequently, they are mapped into a fixed point representation using the relation

Cin = qi × (Cin sRGB − 0.5)× 2,C ∈ {R,G ,B}, qi ∈ [1, 2, 4, 8, ..., 128] (2)

which maps [0, 1] −→ [−qi , qi ]. The multiplier qi represents the quantisation step size in this mapping step.
This forms the input patch for training the model using the QAT training flow.



3.3.2 Post-Processing steps

The model generates low-resolution patches corresponding to the input image, which are in the range [−qo , qo ],
with qo ∈ {1, 2, 4, ..., 128} as the step size for the output’s fixed point scale. The low-resolution patches are
combined together to form a high-resolution output and transformed back to the floating point representation
using the equation

Cout sRGB = ((Cout/qo) + 1)/2,C ∈ {R,G ,B} (3)

which is in the range [0, 1]. Subsequently, the normalised high-resolution image is converted back to the linear
colour space by the corresponding transfer function using the relation:

Cout linear =

{
(Cout sRGB+0.055

1.055 )2.4 Cout sRGB > 0.004045
Cout sRGB

12.92 else
,C ∈ {R,G ,B} (4)

The colour space converted image is then passed to the TCP manager within the ML server for transferring back
to the Nuke node that invoked the inference accelerator.

4. RESULTS

4.1 Training setup

For training, we train the model on the data from 4 unique user video clips of the matting dataset. Starting with
a floating point variant of the pix2pix model, we use the training split of the data to train the model at native
precision for 10 epochs. The pre-trained model is then exported as a checkpoint for passing to the Vitis-AI’s
QAT flow. The QAT flow performs a quantisation-aware tuning of the weights and biases to 8-bit precision
over 10-15 iterations using the training split of the data, and exports the optimal quantised model as the final
checkpoint. The quantised model is subsequently compiled into an xmodel executable file containing weights and
instructions for the DPU accelerator IP.

4.2 Test setup

For testing the system, we use the smaller AMD U50 data centre accelerator card as our target FPGA, which
is hosted on a workstation machine featuring an i7-4770 processor over a PCIe Gen3x16 link. For limiting the
variability due to network performance, our Nuke instance is also running on the same machine, creating a
virtual TCP connection to the ML server node that interfaces to the Alveo device using VART APIs. The Alveo
device is configured with the DPUCAHX8H IP core, which is high throughput configuration of the DPU core
optimised for convolutional operations. The DPU is instantiated in the user-configurable region of the U50 with
additional logic for managing configurations, instructions and data movement. Two DPU cores are instantiated
by the DPUCAHX8H IP core, each having 3 execution units. The default thread execution parameter is left
unchanged for our tests.

From a nuke graph, each input/intermediate image is passed to the server and VART APIs for performing
inference on the DPU in an asynchronous manner. The CPU task goes to idle as it waits for the processed
image to be returned by the server API. However, this flow suffers from a very large initiation interval (II) as
the next input is processed only after the complete execution of the first, reducing the overall throughput of the
accelerator. Alternatively, passing multiple processing requests to the DPU allows it to optimally schedule the
subtasks internally and to utilise its pipelined design to the fullest, significantly reducing the II of the flow, and
thus achieving much higher throughput on the accelerator. Note that typical inference acceleration on GPUs
(including our setup) utilises a similar scheme to extract higher throughput in the operation.

We report our results based on the matted high-resolution images returned by the quantised model on the
Alveo U50. We also quantify the processing latency, initiation interval and energy consumption of the model
on the Alveo device. The results are compared against a traditional acceleration flow within Nuke that utilises
an Nvidia RTX 3080-Ti GPU hosted on a Ubuntu server with a high-end Intel 11700K CPU running the same
version of Nuke tools and client-server interface.



4.3 Performance results

Figure 5 shows the comparison between the ground truth image and the output generated by our quantised model
on the Alveo U50 for a set of input images. It can be observed that the outputs generated by the quantised model
are visually identical to the ground truth from the matting dataset. To accurately quantify the variations in
the generated output against the ground truth, we use the intersection over union metric as they are commonly
used in other I2I research results. We also compute the mean squared error between the images, averaged over
multiple runs for each user image. The results are shown in table 1, comparing it against the results from the
floating point model on the Nvidia 3080-Ti GPU. We observe that the average IoU value across all users is > 0.95
for the quantised model and is comparable to the results obtained by the floating point model, which points to a
highly accurate construction of the matted image corresponding to the test data samples in the matting dataset
by the quantised model on the FPGA. The mean squared error results also show a close correlation between the
images generated by the two platforms, with the quantised model achieving significantly lower MSE in the case
of user 2.

Figure 5. Input, ground truth image and the output image from the quantised pix2pix model, when tested on the matting
dataset.



Table 1. IoU and MSE scores for different user image sets averaged across multiple runs

Users
Quantised model on FPGA fp32 model on GPU

IoU MSE IoU MSE

User-1 0.981 1.64 0.984 1.83
User-2 0.973 2.6 0.985 3.35
User-3 0.968 2.15 0.99 2.11
User-4 0.989 1.81 0.991 1.65

4.4 Energy efficiency, latency and resources

To quantify the energy efficiency of the FPGA offload, we compare the model against an identical Nuke offload
targeting an Nvidia 3080-Ti GPU (GPU accelerated) and the Intel 11700K CPU (GPU not available mode). The
active power consumption of each platform is measured and averaged over multiple runs to eliminate outliers.
For the Alveo, VART API’s built-in utility function is used to report the power draw from the power rails on
the device (12V for FPGA and 3.3V for the HBM) at runtime. In the case of the CPU, the Running Average
Power Limit (RAPL) interface is used to isolate the CPU power consumption when running inference, while
Nvidia tools are used to report the active power consumption on the GPU during inference. For the FPGA
accelerator, the latency is measured as the total time from the invocation of the VART runner on the server node
to the completion of the inference task on the DPU. In the case of the CPU and GPU inference, the decoding
latency is measured as the wall clock execution time of each patch, when invoked from the server interface of
the client-server model. The pre-/post-processing phase and the TCP interface delays are not factored into the
latency calculations on the CPU, GPU and FPGA. The client-server model is shared by all accelerators with
different low-level APIs invoked from the server interface for each platform (VART APIs for Alveo, Nvidia CUDA
APIs for the GPU). The pre-/post-processing steps to generate smaller input image patches for the model are
also identical for all platforms.

Table 2 shows the average results obtained for inference frames per second, inference latency, initiation interval
of the inference task and average energy consumed by the inference task across the CPU, GPU-accelerated model
and the quantised model on the FPGA. The results show that the custom quantised pix2pix model on the FPGA
is able to achieve a steady state throughput of 394.32 inferences per second, which is 1.14× higher than a GPU
offload. This is despite the higher latency ( 8×) per inference incurred by the FPGA accelerated model due to its
heavily pipelined execution stages. However, the quantised model on the U50 consumes 11× lower energy (0.07 J)
per inference when compared to the GPU and 131× lower energy than the CPU-based inference. The accelerator
consumes nearly 35% of available LUTs, 30% of registers and 58% of DSP blocks on the Alveo U50. The results
demonstrate that significant performance and energy efficiency gains can be achieved by offloading complex
deep-learning-based motion picture tasks to custom accelerators on FPGAs with very little effort required for
integration with existing software tools and workflows.

Table 2. Steady state results on different platforms averaged across multiple executions of a single patch of the input
image.

Platform FPS Latency (ms) II (ms) Energy (J)

U-Net CPU 6.8 143.2 147.05 9.20
U-Net GPU 343.6 2.9 2.91 0.79
U-Net FPGA 394.32 23.1 2.5 0.07

5. CONCLUSION

Deep learning is increasingly finding new application avenues in motion picture workflows and GPUs continue to
be the de facto platform of choice for accelerating these tasks. In this work, we investigate the feasibility of using



a custom deep-learning accelerator as an alternative platform for I2I transformation tasks and its integration
with motion picture tools, using alpha background matting as an example use case, pix2pix cGAN as the deep
learning model and Foundry’s Nuke as the software platform. We show that the accelerator can be seamlessly
interfaced with the Nuke graph using a simple client-server model utilising standard vendor libraries and scripts.
The pix2pix model is quantised and trained on the VideoMatte240K dataset using standard PyTorch training
flow and AMD’s Vitis-AI flow for quantisation, fine-tuning and calibration. The quantised model is deployed as
an accelerator attached to a TCP server on an Alveo U50 data centre accelerator platform and compared against
Nuke’s native deep learning accelerator modes using an Intel 11700K CPU and an Nvidia RTX 3080-Ti GPU.
Our results show that the quantised pix2pix model achieves visually identical results to the ground truth with an
average IoU of > 0.95 across multiple image sets while achieving 1.14× higher throughput and consuming 11×
lower energy per inference than the GPU-accelerated inference. The results show that custom accelerators and
their deeper integration into motion picture tools are a promising pathway for the energy-efficient acceleration
of deep-learning-based I2I transformations in motion picture workflows.
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