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Abstract—Automotive systems comprise a high number of net-
worked safety-critical functions. Any design changes or addition
of new functionality must be rigorously tested to ensure that no
performance or safety issues are introduced, and this consumes a
significant amount of time. Validation should be conducted using
a faithful representation of the system, and so typically, a full
subsystem is built for validation. We present a scalable scheme for
emulating a complete cluster of automotive embedded compute
units on an FPGA, with accelerated network communication
using custom physical level interfaces. With these interfaces, we
can achieve acceleration of system emulation by 8× or more,
with a systematic way of exploring real-world issues like jitter,
network delays, and data corruption, among others. By using
the same communication infrastructure as in a real deployed
system, this validation is closer to the requirements of stan-
dards compliance. This approach also enables hardware-in-the-
loop (HIL) validation, allowing rapid prototyping of distributed
functions, including changes in network topology and parameters,
and modification of time-triggered schedules without physical
hardware modification. We present an implementation of this
framework on the Xilinx ML605 evaluation board that integrates
six FlexRay automotive functions to demonstrate the potential of
the framework.

I. INTRODUCTION

Modern vehicles can be considered as distributed mobile
computing platforms, with top-of-the-range vehicles incor-
porating up to 100 embedded compute units with functions
ranging from vehicle dynamics to passenger comfort. The
embedded hardware is connected through a heterogeneous
network communicating using multiple protocol specifications,
with gateways between them. This growing complexity makes
iterative design improvements more difficult, as any changes
to the network must not impact the performance and safety of
existing nodes. For more cutting-edge safety-critical systems,
like drive-by-wire, the risks are even greater.

Relying on high-level simulations of such systems is in-
sufficient, as they often fail to capture low-level network
communication issues that can have a significant bearing
on overall system performance. One common method is to
integrate a hardware cluster consisting of multiple devices, as
shown in Fig. 1, with the sensors and actuators in a hardware-
in-the-loop (HIL) setup. HIL tests enable the design team to
extensively test and certify the functions and to verify the
network topology, parameters, and communication schedules
by using a faithful representation of the cluster in a controlled
setting. For top-of-the-range models, this can require setup of

Fig. 1: Lab test setup for 4 ECUs.

a cluster comprising a high number of compute units (ECUs),
sensors and actuators, along with the communication network.

As the number of nodes in vehicles continues to increase,
these laboratory setups become more complex, and as a result,
restrict the space of configurations that can be explored. Even
small modifications to the setup can require a significant
amount of reworking, e.g., reconfiguring the timing parameters
of all distinct nodes on the network.

We propose to model an entire cluster of ECUs on a
single FPGA, using real implementations of the compute
units, and communication infrastructure. This allows us to
conduct more extensive hardware in the loop validation, with
easier modifications to the system setup, the ability to test for
robustness to physical issues, and a guarantee of faithfulness
to the actual implementation.

In this paper, we describe a verification platform using a
single FPGA that integrates a complete compute cluster of
embedded compute nodes along with their network infrastruc-
ture. We use the FlexRay time-triggered automotive network
protocol, with interfaces we have built for use in discrete
FPGA compute units, allowing for cycle-accurate simulation.
In addition to this, we are able to leverage optimisations in
the interfaces to offer 8× or more speed-up in simulation, in
addition to testing for real world issues like clock jitter and
node failures. The approach can be adapted for other time-
triggered protocols.

The remainder of this paper is organised as follows: In
Section II, we give an overview of similar approaches de-
scribed in the literature. Section III outlines the general idea



of HIL testing and how our approach offers added advantages.
Section IV details the software and hardware architecture
of the proposed platform. We also describe our approach
for achieving acceleration in the verification flow. In Section
V, we present a case study that showcases the platform’s
capabilities. Finally, Section VI concludes and outlines our
future work.

II. BACKGROUND

Computational infrastructure in a modern vehicle is organ-
ised into different segments or domains based on bandwidth
requirements and the criticality of the relevant functions. Each
domain is served by a communication protocol that balances
the reliability requirements and cost considerations for the
intended tasks [1], [2], [3]. For simple tasks like door and
window controls, a protocol like Local Interconnect Networks
(LIN) is used, while more complex control functions might use
Control Area Networks (CAN). Functions which are deemed
safety-critical are served by high performance protocols which
provide redundancy and timeliness like the FlexRay protocol,
which is gaining ground as the de facto protocol for safety-
critical applications. Similar protocols based on time-triggered
Ethernet are also under development, and the proposed ap-
proach can be adapted to them. In-vehicle systems hence
represent a heterogeneous and complex network of distributed
functions.

Compute functions are usually implemented as software
on commercial processors, to provide flexibility and easy
upgradability. FPGAs have been used for evolving high per-
formance applications such as computer vision, and this role is
expected to grow as computational requirements increase [4].
Some potential advantages of FPGA-based computing for
safety-critical and non-safety-critical vehicular applications
are discussed in [5]. In [6], the authors describe approaches
for implementing FPGA-based ECUs for general and safety-
critical applications which are completely compliant with
AUTOSAR standards. Dynamic and partial reconfiguration of
FPGAs in automotive applications has also been discussed.
In [7], the author proposes runtime reconfiguration (complete)
of FPGAs in the presence of errors to enable hardware-level
fault-tolerance. In [8], we leverage partial reconfiguration as
part of a proposed fault-tolerant scheme for compute units on
a FlexRay bus. In [9], the authors describe an FPGA-based
framework which enables Ethernet-based networks for real-
time applications with predictable latencies, while coexisting
with standard non-deterministic traffic.

Even as they find more widespread use, with falling costs
and improving capabilities, FPGAs have long been used for
rapid prototyping and validation of complex applications.
When simulating a system in software, high level models
are typically used to enable these simulations to run in
reasonable time. This, however, means that such models do
not incorporate all the details that might be necessary for
a truly accurate simulation. FPGAs offer us the opportunity
to mimic the exact hardware system, offering cycle- and
bit- accurate simulations orders of magnitude faster than

would be possible in software. Hence, they are widely used
for validating processors, systems-on-chip and other complex
systems. Architectures for FPGA-based ASIC emulation and
co-verification for embedded systems are described in great
detail in [10], [11]. One significant challenge in such cases
is the limited I/O pin count of FPGAs, which is addressed
in [12], where the authors propose a technique called virtual
wires. FPGA-based emulation is also widely employed in
validation of critical communication networks, where the use
of reconfigurable fabrics provides significant advantages in
speed and accuracy [13].

In the automotive domain, FPGA-based computing units
and interfaces with special test capabilities have been proposed
for validating novel functions [14]. This allows injection of
real-world errors during validation, which would otherwise
require more complex hardware in the test setup. FPGAs
have also been used for validating vehicle-to-vehicle (V2V)
communication, serving as channel emulators for evaluating
wireless transceivers [15].

To the best of the authors’ knowledge, there is no prior
work that investigates the integration of a network cluster on
a single FPGA for validation purposes, despite the significant
advantages it offers.

III. GENERAL CONCEPT

Hardware-in-the-loop tests are used to profile the per-
formance of a system under real-world conditions. This is
done by mimicking the real world implementation scenario,
including the network and other communicating devices. Con-
ducting such tests is essential when modifying parts of the
automotive network, as this establishes whether these changes
can be tolerated within the context of the exiting system
and its network properties, without impacting performance
and reliability. As shown in Fig. 1, a typical setup would
include multiple compute units and their network interfaces,
with lengths of cable to mirror connectivity in the vehicle,
along with sensors and actuators or models of them. For a
reasonably sized subsystem, this setup can be cumbersome;
analysing the state of the system involves collecting data
from many discrete nodes, and any changes might involve
complex re-assembly. With hybrid and full electric vehicles
(EVs) gaining popularity, computational complexity in future
vehicles is expected to increase substantially as more safety
critical systems, like drive-by-wire, are incorporated. Existing
validation approaches do not scale well for such systems.

Rather than build the test system from discrete components,
we propose to model the subsystem using actual implementa-
tions of the compute functions, network interfaces, network
topology, and sensor/actuator interfaces on a single large
FPGA, as shown in Fig. 2. A unified external interface to
the outside world allows sensors and actuators or models of
them to be attached easily.

A key benefit of this approach is that multiple distinct
configurations, and even subsystems can be evaluated on the
same platform, simply by reconfiguring the FPGA. This results
in reduced setup times and a faster turnaround for experiments.
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Fig. 2: Hardware in the loop test setup.
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Fig. 3: System architecture of the validation platform.

The afforded flexibility also opens the door to more complex
design space exploration and optimisation of ECU architec-
tures, interconnect topologies, and communication schedules,
allowing the designer to more confidently identify a robust
combination for a given subsystem. In this paper, we focus
on presenting a scalable and configurable platform on FPGAs
that enables high speed verification of automotive systems with
simplified software control. This framework can also address
the rising challenge of architectural optimisation and design
space exploration for evolving functions and networks in the
automotive domain generally.

IV. SYSTEM ARCHITECTURE

The complete verification platform comprises a standard
host PC connected to a commercial FPGA board, as shown
in Fig. 3. Software on the host PC controls and configures
the FPGA board over standard Ethernet, JTAG, and UART
interfaces. The FPGA board integrates a cluster of isolated
compute units or ECUs connected through a dual-channel
FlexRay communication network. Each ECU may implement a
specific automotive function, like park assist or adaptive cruise
control, either as a hardware implementation or as software
running on a soft processor. Interfaces within the FPGA are
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Fig. 4: Hardware architecture of the validation platform.

built using hard macros or optimised IP to minimise overhead,
and allow for complex ECUs.

A. Hardware Architecture

Fig. 4 shows the architecture of the validation platform, with
the external interfaces and clock domains. The figure describes
an example design comprising 6 independent computing units
marked ECU1 to ECU6. Each ECU is fed with independent
isolated clocks, marked as HCx for ECUx generated by the
hardware clock manager. Each ICx clock is the interface clock
for the FlexRay interface within ECUx, enabling the interfaces
to be clocked at a different frequency from the ECU core.
The interfaces enable communication between ECUs (over the
FlexRay bus) and can be controlled by the host PC.

1) Host Interfaces and Global Registers: The host PC can
communicate with the ECUs over the shared UART Config/de-
bug interface, the Xil debug JTAG interface and the Ethernet
interface, as shown in Figures 3 and 4. The host PC controls
the FPGA platform by accessing the global registers (register
file) over the Config/debug interface. The Xil debug JTAG
interface enables initialisation and debugging of Microblaze-
based ECUs in the cluster, using the Microblaze debugger
module (MDM). The host PC uses the Ethernet interface as
a real-time debugger for monitoring the state of the FlexRay
bus and selected control signals from the ECUs in the cluster.

The Register File implements a set of global registers
that are used to configure the interfaces, set platform pa-
rameters, and control/configure the special test features. The
functionality of each register is described in Table I. The
control/configuration registers are used for enabling/disabling
the platform, enabling test cases and to configure the operation
modes. The Config UART is also mapped in the memory space
of each ECU, and thus doubles as a debug interface. This
enables host software to access debug data and registers using
the ECU Address Registers as an indirect addressing register.

2) ECU architecture: Compute units implement automotive
functions either as hardware functions, or as software on
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a soft processor. Fig. 5 illustrates one such model for an
ECU. As would be the case in a vehicle, each ECU is
completely independent and implemented in isolation. The
primary function represents the functional implementation of
an automotive algorithm in either software or hardware. The
application accelerators are dedicated hardware units like FFT
modules or FIR filters that leverage FPGA specific hardware
like DSP blocks, or other custom hardware designed for a
specific application. The ECU memory is built using Block-
RAMs. ECUs also incorporate a dual channel FlexRay Com-
munication Controller (CC) which implements the FlexRay
communication protocol. A key aspect of this platform is that
each ECU uses a fully featured communication controller for
verification, just as would be the case in the final deployment.

The ECUs may interface with subsystems like sensor mod-
ules over standard interfaces like SPI, I2C, or other system
interfaces. ECUs may also interface with external storage
elements like non-volatile memories or high-speed DRAMs.
The external memory controller provides multi-channel access
to such storage elements, and ECUs can connect to it over a

TABLE I: Register file description.

Address Function Description

0x00 Version register H/W version number
0x01 Platform control Controls the interfaces and opera-

tive modes of the H/W platform
0x02 Platform status Interface and mode status register

for the H/W platform
0x03 Debug control Operative modes & parameters for

the debug module
0x04 Error injection Enable/disable error modes - bit er-

ror, frame error, frame delay, frame
drops

0x05 Bit error config Specifies the bit/byte(s) to insert
error

0x06 Error slot config Specifies the Slot-ID to insert error
0x07 Delay rate config Specifies the delay value in ticks
0x08 Frame drop config Specifies the FlexRay cycle to drop

Frame
0x09 ECU addr reg [31:16] ECU debug : Indirect address reg-

ister (upper DWORD)
0x0A ECU addr reg [15:0] ECU debug : Indirect address reg-

ister (lower DWORD)
0x0B ECU access control Selects ECU and read/write for in-

direct access
0x0C ECU data reg [31:16] ECU debug data (write/read)
0x0D ECU data reg [15:0] ECU debug data (write/read)
0x0E Clock jitter Select the clock offset for ICx -

frequency/phase and offset value
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Fig. 6: Custom CC architecture.

streaming interface. It is configured to ensure that the memory
spaces are isolated between the different channels.

3) The FlexRay bus and FlexRay Communication Con-
troller (CC): The heart of the verification platform is the
FlexRay bus and FlexRay CC. FlexRay is a state-of-the-art
serial communication protocol for interconnecting automotive
ECUs [16]. It uses a periodic communication scheme called
the FlexRay cycle, where each cycle is composed of a se-
quence of communication slots that are statically allocated
to the different ECUs at design-time. FlexRay offers support
for deterministic and volume data transfers within the same
cycle using a combination of fixed-size and variable-size slot-
based medium access. The communication configuration of the
individual ECUs determines the FlexRay parameters (global
and node-level) and communication slots assigned to them.
This information is embedded in each ECU and the primary
function (processor or logic) initialises the controller with
these values during startup.

Communication occurs over the shared medium when an
ECU uses the allocated slot(s) to transfer/receive data to/from
another compute unit, sensor or actuator. The FlexRay en-
coding scheme ensures redundancy for the transmitted data,
providing protection against possible interference in the harsh
automotive environment. The FlexRay CC implements the
protocol specification, abstracting this information from the
rest of the system.

To enable a compact implementation of the ECUs, we
have developed an FPGA-optimised FlexRay communication
controller that leverages FPGA-specific resources like BRAMs
and DSP blocks and enables a tight integration with the
primary processing function or algorithm. The controller also
features a configurable set of extended capabilities which are
not available in commercial off-the-shelf implementations of
the FlexRay protocol. We leverage the capabilities of this con-
troller to verify the ECU design against real world scenarios



like frame errors, jitters, delays, and more. A block diagram
of the custom controller is shown in Fig. 6. The controller
comprises two major blocks; the Controller Host Interface
(CHI) which interfaces to the primary function over industry
standard AXI/PLB bus with burst capability, and the Protocol
Engine (PE), which implements the protocol specifics. The
configuration, control and status space is embedded in the
CHI module along with an isolated data store. To provide
independence from the clock requirements of the FlexRay
logic, the CHI module uses the host function clock as its
primary clock.

The PE module implements the communication specifica-
tion described by the FlexRay protocol. It comprises three
functional sub-blocks:

1) Clock Synchronisation (CS) responsible for maintaining
a steady local clock and periodic synchronisation with
the global timebase.

2) Medium Interface Layer (MIL) which implements data-
path functions like encoding/decoding of data streams,
medium access control and framing/processing of data.

3) Protocol Management Module which controls and co-
ordinates the CS and MIL modules by controlling their
modes in response to host commands or network con-
ditions, ensuring protocol compliance at all times.

The custom PE also offers configurable extended functionality
like time-stamping of transmitted and received data, multi-
cycle data handling, extensive filtering schemes for received
data and security features like automatic rejection of untimely
data, without intervention from the processing logic.

4) Error injection and live-debugging: The Bridge Node
is a special ECU in the cluster that implements two distinct
functions; a bus replay module (BRM) function and a bus
debug module (BDM) function. The BRM allows logged data
from a real experimental setup to be stored in its CC and
played back within the FPGA network in a cycle accurate
manner. The BRM also enables special test capabilities like
bit-error injection, delay and jitter adjustment, as well as
preconfigured frame drops during transmission, using the
extended capabilities of the custom FlexRay CC. The BRM
supports specific (like delay slot x in cycle y by t units) and
pseudo random specifications for the parameters. Errors and
delays can also be injected in transmissions by other ECUs in
the cluster. Bus buffers controlled by the BRM are used to drop
frames (specific or random) transmitted by other ECUs while
bit-errors are injected by directly modifying the transmitted
values on the bus.

The bus debug module enables real-time debugging of the
FlexRay bus and the ECU control signals selected at design-
time. The BDM captures the selected signals with a times-
tamp and encapsulates them into Ethernet frames which are
transmitted over the Gigabit Ethernet interface. The BDM also
features a trigger mode which can be configured to perform a
trigger-based capture of selected signals. The Ethernet frames
are decoded into value change dump (VCD) format by the
debug tools and can be viewed on the host PC in real-time.

B. Software support on the host PC

The initialisation and management of the verification plat-
form is handled on the host PC using the Python function
calls listed in Table II. The individual init functions can be
used to initialise the platform by configuring all the ECUs,
one specific ECU or the BRM module. The mode platform
function control the error injection capabilities of the platform,
while the mode debug function configures and trigger the live-
debugger module (BDM).

The code for an example design comprising multiple ECUs
is shown in Fig. 7. The initialisation segment creates a merged
bitstream file from the tool-generated bit file by invoking
the init platform API call. The function merges the software
(elf) for ECU1 (mb 0) into the tp top bit file, which is
used in subsequent calls that initialise the remaining ECUs.
For the final ECU, the done flag is set to 1, triggering
the initialisation of the FPGA with the integrated bitstream.
Subsequently, tests are performed on the cluster by using the
mode debug and mode platform function calls. A change in
software or communication schedule is triggered by altering
the software routine in the specific ECU, which is triggered
by the init processor API call in the example.

C. Accelerated Mode

A normal FlexRay bus provides a serial datapath over an
unshielded twisted pair cable. To ensure data is protected in
the harsh automotive environment, the FlexRay protocol im-
poses bit-level redundancy for all transmissions. The decoder
must sample these redundant bits and majority vote over a
predefined 8-bit window to decide bit polarity. This results
in an actual transmission rate of 80 Mbps for the maximum
FlexRay data rate of 10 Mbps. Hence, an 80 MHz sampling
and transmission clock are required for the FlexRay CC. This
would limit the potential overclocking possible on an FPGA
to around 3 × (a frequency of 240 MHz is considered high
for complex designs).

TABLE II: Software APIs.

Function Arguements Description

init platform() elf file,
processor tag,
bit file,
done flag

Initialises the processor proces-
sor tag with code elf file, creates
bitstream bit file, downloads it to
FPGA

mode platform() reg file address,
reg file value

Modifies the register file content at
address reg file address with value
reg file value; alters the operating
mode of platform

init processor() elf file,
processor tag

Downloads the modified software
elf file to the processor proces-
sor tag and resets it

init BRM() brm file Initialises the BRM memory with
the captured FlexRay bus data and
enables the BRM

mode debug() reg file value,
capture flag

Alters the behaviour of the Bus
Debug Module. Can choose debug
signals using reg file value and al-
ter host data capture using cap-
ture flag



1 from init_platform import init_platform
2 from init_BRAM import init_BRAM
3 from mode_debug import mode_debug
4 from mode_platform import mode_platform
5 from init_processor import init_processor
6
7 # define global values
8 debug_config = #value
9 test_config0 = #value

10 . . .
11 test_confign = #value
12 . . .
13
14 # Initialisation
15 # merge ECU software with bitstream
16 # generate a merged file for first ECU
17 init_platform("ecu0.elf","mb_0","tp_top",0)
18 # use merged file for further ECUs
19 init_platform("ecu1.elf","mb_1","tp_top",0)
20 . . .
21 # set done_flag to 1 for the final ECU
22 init_platform(. . .,1)
23
24 # Run Tests
25 # write debug_configuration and start debug
26 mode_debug(debug_config,1,1)
27 mode_platform(reg_addr, test_config0)
28 . . .
29 # stop current test
30 mode_platform(reg_addr, 0,0)
31
32 # Modify ECU S/W
33 init_processor("elf_new1.elf","mb_1")
34 # Re-run Tests
35 # write debug_configuration and start debug
36 mode_debug(debug_config,1,1)
37 mode_platform(reg_addr, test_config1)
38 . . .

Fig. 7: Python Software Flow.

Since the entire FlexRay bus is contained within the FPGA,
and we can be sure of transmission robustness, we take
advantage of the 8 times serial redundancy to make the bus
byte-wide. In order not to affect the protocol constraints,
only the coder-decoder module within the FlexRay PHY is
altered to support byte-wide transmission and reception. This
relaxes the clock frequency required for the interface to 10
MHz. Alternatively, the modification allows data transmission
to be overclocked to 8× or more, enabling faster progression
of the emulation. With fast mode selected, the achievable
cluster acceleration is limited primarily by the acceleration
possible for the compute nodes, rather than the communication
infrastructure.

For functional validation, the FlexRay CC switches its
operating mode from normal-serial mode to fast-parallel mode
when fast mode is enabled in the Platform Control register.
The ECUs are issued with a reset signal and the FlexRay
interface switches to the parallel mode. The ECUs’ software
reads the state change and enables faster local clock con-
figuration for the interface, thus accelerating the validation
process. However, for HIL tests which should progress at line-
speeds, normal mode should be enabled. For normal mode,
the FlexRay CC switches to the normal-serial mode which
offers complete compliance with the FlexRay interface spec-
ification at all levels and is configured with the actual local
clock configuration. The verification/HIL tests then progresses
at normal hardware speeds.

V. TEST SETUP AND RESULTS

To evaluate the capabilities of the platform we have im-
plemented it on a Xilinx ML605 board that incorporates a
Virtex-6 LX240T device. This implementation incorporates 6
compute units including the bridge node. Four of them (ECU1
to ECU4) use a Microblaze running specific algorithms as
the primary function. ECU1 and ECU2 form part of a park-
assist system with ECU1 forming the sensor interface and
ECU2 forming the compute and actuator interface. ECU3 and
ECU4 represent prime and standby logic for an adaptive cruise
control system with dedicated hardware accelerators. ECU5
consists of a hardware implementation of a radar interface
for the adaptive cruise control system which passes sampled
radar data over the FlexRay bus for processing by the primary
and standby units. The Bridge Node mimics a centralised fault
detection unit which can trigger a switch between the primary
and redundant functions. The resource utilisation of the setup
is shown in Table III. The commands to/from the brake and
throttle actuators/sensors are collected/generated by the Bridge
Node. This can be replaced by actual models in an HIL test
setup, or connections to real actuators/sensors.

In this test setup, we have configured the ECUs to utilise on
chip memory (BRAMs) rather than external memory, resulting
in 88% BRAM utilisation. With this exception, the overall
FPGA utilisation is below 50% and hence it is possible to
integrate more ECU functions. As FPGAs continue to grow,
larger clusters of ECUs can be integrated and tested. Initial
experiments confirm that 10 or more ECUs can be integrated
on the Xilinx VC707 evaluation board that incorporates a
Virtex-7 XC7VX485T device.

A. Test Cases

In error injection tests, we inject bit-errors, and frame drops
modelling disturbances and loss of communication on the
cluster network. Clock drift within the system is tested by
dynamically altering the clock phase and frequency of the
clock generator module. We can also inject special frames to
trigger specific responses from ECUs. The effects of these tests
are validated against expected behaviours of the functional
modules in the cluster. The FlexRay communication parame-
ters for the system are detailed in Table IV. The consolidated
test results for the different test cases described below are
tabulated in Table V.

TABLE III: Resource utilisation on XC6VLX240T.

Function LUTs FFs BRAMs DSPs

ECU1 11339 7614 77 5
ECU2 11334 7614 29 5
ECU3 13837 11766 87 47
ECU4 13844 11771 87 47
ECU5 9006 5604 13 2
Bridge ECU 12121 8479 79 5
Debug Logic 791 1010 10 0

Total 74186 56184 729 111
(%) 49% 18% 87.6% 14%



TABLE IV: Communication schedule for the cluster.

Parameters Assigned Values

Number of Cycles 64, 1 ms per cycle
Number of Static Slots 15 at 32 macroticks each
Payload Length (Static) 2 words
Number of Dynamic Slots 71 (max)
ECU1 Data Txn Cycles 0 to 31 on multiple slots
ECU2 Data Txn Cycles 32 to 63 on multiple slots
ECU3 Data Txn Cycles 0 to 15,48 to 63 on multiple slots
ECU4 Data Txn Cycles 16 to 47 on multiple slots
ECU5 Data Txn All Cycles on Slot 16
Bridge Node Data Txn All Cycles on Slot 5

1) Park Assist System: ECU2 of the park-assist system
samples data from the sensor ECU (ECU1) over 64 ms and
computes the adjustments required to the throttle, steering and
brake controls to complete the parking operation, once the
park-mode is chosen by the user. The module should stop if
it receives a consistent stream of erroneous sensor data (64
samples) or it fails to receive valid data over 4 consecutive
communication cycles. In our first set of tests, we inject bit-
errors into the sensor data transmitted by ECU1 by altering
a selected bit in the data segment of the frame for 64 data
samples. It was observed that on receiving the 64th consecutive
sample with error, ECU2 transmits an error code in its data
segment indicating a sensor malfunction, and ceases to provide
control information to the throttle and steering ECUs. ECU1
stays halted even if it receives a stream of error free packets,
and must be restarted by re-enabling park-mode signal, as in
the specification.

For the second set of tests, we drop frames from ECU1
modelling a communication break-up between the two mod-
ules. It was observed that ECU2 issues the error code in its
data segment as in the previous case and ceases to provide
control information. However, once the communication is re-
established, ECU2 resumes normal operation after receiving
a complete set of error-free sensor data, as required by the
design.

2) Radar front-end system: The radar front-end system
is based on a 64ms frequency modulated continuous wave
(FMCW) radar scanner. When enabled, ECU5 models the radar
system and transmits the received samples from the radar
interface for processing by the target detection ECUs (ECU3
and ECU4). These ECUs detect and estimate the distance and
velocity of targets from the sample data and issue control
signals to the throttle and brake ECUs. The target ECUs
must reject a complete data-set if any chunk of the received
data is detected to have errors. In such a cycle, the ECUs
must not issue any control commands corresponding to the
erroneous data. Even with single bit-errors in a dataset, ECU3
and ECU4 flagged erroneous communication in their respective
data, while providing no control input to the throttle/brake
ECUs. With persistent errors, both ECUs went into fall-back
mode which provides minimal functionality using available
data segments.

When a communication outage was modelled by dropping
frames from ECU5, both ECUs first went into fallback mode
and then to halt mode, as expected. When communication was
restored, they returned to normal mode. The Bridge Node was
used to send special fault state frames addressed to the ECUs,
forcing them into fallback state and performing recovery.

3) Babbling Idiot Test: A common fault in time-triggered
systems is the babbling idiot fault, whereby a node trans-
mits messages at arbitrary points in time, corrupting the bus
transmission. This is modelled by forcing the Bridge Node
to transmit frames in slots not assigned to it, disrupting the
communication sequence. During this test, the other nodes
fail to stay in synchronisation due to the inconsistency of
transmission and as required by the FlexRay protocol, they
switch to the halt mode and flag a clock synchronisation error.
Once restarted under normal conditions, the ECUs reset the
FlexRay interface and re-integrate into the cluster, resuming
normal communication.

4) Clock Drifts/Jitter: A distributed system often faces the
issue of lack of synchronisation between participating nodes
due to drifts of their individual clocks. In our test setup, this
is modelled by altering the phase and/or frequency of the in-
terface clocks dynamically using the dynamic reconfiguration
port (DRP) found in Xilinx Clock Managers. When enabled,
a predefined set of test cases that perform phase drifts and
frequency drifts can be performed on the nodes. These include
shifting any selected clock by 45/90/180 degrees or altering the
frequency by fixed steps. Any chosen set will cause all ECUs
to be reset and restarted with the selected clock combination.

During our experiments, we observed that phase variations
on the clock were absorbed by the FlexRay clock correction
mechanisms, while frequency variations of more than 10%
caused nodes to go out of sync, without being able to recover
from the error.

B. Acceleration Tests

Accelerating the emulation process is one of the key advan-
tages of our platform. In normal mode, the ECUs are run at 50
MHz (Microblaze clock), while the FlexRay network is run-
ning at full capacity (10 Mbps data rate). The platform control
register enables the clock frequency to the FlexRay interfaces
and ECUs to be modified. When fast mode is selected, the
debug waveform shows the ECUs being reset, and clocked
with the new frequencies, with the parallel communication
interface enabled. Normal communication was established
over the parallel bus, as required by the FlexRay protocol, with
the interface now being clocked at 10 MHz. By choosing an
acceleration of 2× in the platform control register, the ECUs
were fed with 2× clocks by the clock manager, enabling the
function and interfaces to run twice as fast as in the normal
case. With 4× acceleration, Microblaze-based ECUs, now
clocked at 200 MHz, were at the limits of what is supported.
At this speed, reliable and error-free communication was
established between all ECUs. Microblaze-based ECUs were
limited from further acceleration, and only the logic-based
ECU5 was able to run at 8×.



TABLE V: Test results.

Test Case Expected Observed

Bit-error

Park assist: ECU2
fault message

ECU2 transmits error code indi-
cating sensor fault

Radar system: reject
dataset

Rejects data & flags error; fall-
back mode with persistent errors

Frame drop

Park assist: ECU2
fault message

Transmits error code, recov-
ers when communication re-
established.

Radar system: fall-
back then halt

Switches to fall-back mode &
halts with persistent errors

Special
Frames

Radar ECU: fall-
back, then recovery
mode

Radar ECU decodes error, trig-
gers fall-back mode & initiates
recovery

Random Txn
Synchronisation
error

All ECU’s flag sync error &
halts; recovers on reset

Clock Drift:
Phase

Phase drifts absorbed by FlexRay clock synchronisation

Clock Drift:
Frequency

For drifts > 10% interface loses synchronisation & halts,
unable to recover

Acceleration

Fast mode (1×) Parallel data mode enabled, nor-
mal communication

Fast mode (2×) Two times acceleration in re-
sponse & communication

Fast mode (4×) Four times acceleration over
normal mode

Fast mode (8×) ECU1 to ECU4 fail, ECU5 op-
erates at 8× speed

VI. CONCLUSION

Complex test setups, comprising multiple ECUs and large
amounts of communication infrastructure, are required to
validate and certify the advanced computational functions in
modern vehicles within a realistic environment. Such setups
are cumbersome, and are not amenable to exploration of a
wide range of system architectures.

In this paper, we have presented a modular scheme for
implementing a cluster of ECUs on a commercial FPGA,
with special testing capabilities for emulating real world
conditions. By replicating the network and interfaces on the
FPGA, we ensure that our test setup is completely compliant
with automotive specifications. We have presented a proof-
of-concept implementation on a Xilinx ML605 development
board, integrating six computing units. The cluster/network is
completely contained within the FPGA, allowing us to achieve
8× or more speedup in functional validation, using custom
modifications to the ECU network interface. We also have
the ability to introduce common network errors like clock
jitter, frame drops, bit-errors among other possibilities, all of
which can be controlled and monitored from the host PC using
software APIs. Moreover, any infrastructure modification can
be made with a complete reconfiguration on the FPGA,
enabling easier migration to evolving standards.

We are working on extending this setup to support larger
FPGAs (Virtex-7 series) and multi-FPGA setups that would

enable integration of larger clusters. We are also investigat-
ing how to integrate standardised interfaces to external high
performance processors, compute units and clusters, using the
interfaces available on the FPGA. Finally, we aim to adapt our
FlexRay-based scheme to evolving automotive networks like
synchronous Ethernet, for which the higher layer protocols
have yet to be defined, and we would like to add support for
heterogeneous network setups.
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