
Enhancing Communication On Automotive
Networks Using Data Layer Extensions

Shanker Shreejith, Suhaib A. Fahmy
School of Computer Engineering

Nanyang Technological University, Singapore
Email: {shreejit1,sfahmy}@ntu.edu.sg

Abstract—Automotive systems function within a distributed
computing paradigm consisting of networks of sensors, actuators
and processing units. More advanced functions are finding their
way into the automotive domain, making computing and net-
working more complex. While safety, security and determinism
are primary concerns for many systems, the networking protocols
do not provide extensions to address them and it is left to
application designers to tackle these issues. Standardising simple
features like time-stamping of messages and health status flags
can help improve robustness and mitigate risks associated with
replay attacks. It is also possible to integrate further protection,
like encryption of messages, addressing the increasing security
concerns in this domain. In this paper, we demonstrate a
systematic way of accommodating such enhancements within a
standard automotive network that retains interoperability with
existing systems. We show how such enhancements can be made
possible in both software and hardware to help add functionality
above the core network specification. We also show that the
enhancements incorporated at the hardware layer offers 20×
better performance than the software-based approach.

I. INTRODUCTION

Modern vehicles are controlled by distributed embedded
computing modules, which implement algorithms for the
different functions like drive-by-wire, auto park and others.
The different modules perform specific functions/transfor-
mations on input data (from sensors or previous modules)
and generate outputs which are used by subsequent modules
or fed to control hardware (actuators). Data and control
exchange occurs over a shared twisted pair medium, over
which communication is controlled by protocols like Control
Area Networks (CAN) [1], FlexRay [2], and others. Each
embedded control unit (ECU) thus incorporates a network
interface(s), which implements the protocol specification en-
abling communication with other devices, in addition to the
computing function/logic. Because of the distributed nature of
the whole system, enhancements to overall network protocols
and features supported by individual ECUs can affect overall
system performance significantly.

Any enhancement to the defined communication protocol
must be contained within the data segment to ensure inter-
operability with existing systems. Protocols such as FlexRay
and CAN leave the data segment completely to the application
designer, and hence enhancements in the data layer are effec-
tively hidden from the protocol, ensuring compatibility with
standard network controllers. However, this then requires that
these extensions be processed within the software or hardware

that manages the ECU computation. This can interfere with
the performance of the ECU if this processing burden is
significant.

Common off-the-shelf controllers for FlexRay and CAN
does not provide add-on features or enhancements like time-
stamping, so if required, they must be implemented in ECU
software. However, time-stamping messages when they are
passed to the network interface is not ideal since these mes-
sages may be transmitted over the network at a later time than
when the time-stamps were generated. Moreover, because the
ECU execution is not synchronised in a traditional system, the
software approach incurs additional complexity by requiring
that the different computing modules also be synchronised
(in addition to the network layer). Adding this functionality
would also complicate task management within the ECU and
consume higher power, alongside the actual application.

Instead, it is possible to modify the network interface itself
to filter and process these extensions. This approach presents
a more efficient solution, since time-triggered networks like
FlexRay require the network interfaces to be synchronised
to a high degree before communication can be established.
Furthermore, data segment enhancements like time-stamps and
data-segment headers can be easily and accurately handled
at the interface, resulting in a better in-vehicle ecosystem.
In our implementation of the extensions, we mimic a data-
layer protocol structure similar to the existing layered model
followed in popular networks like Ethernet, providing larger
possibilities for expansion.

In this demonstration, we showcase specific and generic
applications of data-layer extensions that can be used to intro-
duce additional features which would otherwise be expensive.
The demonstration shows that a synchronised time-stamping
of messages can protect the system from replay attacks,
which is a commonly exploited security flaw in automotive
networks. We also show that by incorporating the health
state of the computing node into the data-headers of existing
communications, we can minimise fault-detection latency and
turnaround times for fault-tolerant systems.

II. BACKGROUND AND CONCEPT

Each application can be thought of as a combination of
interdependent tasks. For instance, in a brake-by-wire applica-
tion, the different tasks could be sensor data acquisition, sensor
data fusion, sensor command validation and actuator command

FPT2013 Demo Paper

978-1-4799-2198-0/13/$31.00 ©2013 IEEE

−470−

Computational
Function

Memory Network
Interface

Application
Accelerator

Bus
Driver

System
Interfaces

External
Interfaces BUS A

BUS B

Fig. 1: Typical ECU model.

generation, along with the independent communication tasks
to send and receive data. Each ECU comprises a computational
core (single or multicore processor), associated resources, and
the network interface, as shown in Fig. 1. Tasks are efficiently
mapped onto the distributed computing resources (ECUs and
networks) to implement the complete application.

FlexRay and CAN are robust serial communication proto-
cols based on time-triggered and event-triggered access mech-
anisms, respectively. FlexRay uses a concept of slots which
provide access to the different ECUs based on a predefined
schedule, while CAN uses a priority-based access scheme
to the network. In this work, we concentrate on FlexRay-
based ECUs, while the principles we demonstrate are equally
applicable to CAN and other networks.

The FlexRay protocol defines the FlexRay cycle, which
repeats with a configurable periodicity. Each cycle is in turn
a repetition of slots of fixed (static) and variable (dynamic)
width, which are statically assigned to the participating ECUs
by the communication schedule. These different slot mech-
anisms enable FlexRay to cater to deterministic and volume
data transfer over the same bus. In an assigned slot, the ECU
transfers data by encapsulating it in a FlexRay frame, as shown
in Fig. 2. The complete protocol is usually implemented as
a companion chip like the Infineon CIC 310 [3], Freescale
S12XF, or integrated with the processing core as slave IP on
the same die.

The FlexRay header in the frame captures information
specific to the protocol like slot number, cycle number and
flags. The application/user has complete control over the
data segment, and this is transparent to other devices on the
network. However, like CAN and other existing in-vehicle
networks, FlexRay messages do not have a notion of time
attached to them, which would otherwise enable the applica-
tion to distinguish between current active data and stale data.
The lack of time-tagging is a highly exploited security flaw
in in-vehicle systems, whereby an external agent which gains
access to the internal network can monitor transactions and
replay messages at a later point to disrupt the system [4].
Similarly, there is no standardised scheme for communicating
fault status or health state for safety critical systems, without
dedicating extra slots for such communication. With the rising
number of safety-critical functions and increased automation
in modern vehicle, such as with drive-by-wire systems, we
believe that a standard approach to incorporate such critical

Cycle 0 Cycle 1 Cycle 63

Static Segment Dynamic Segment Symbol Window NIT

Slot 1 Slot 2 Slot n Slot 1 Slot 2 Slot k

Header (5 bytes) Data (up to 254 bytes) CRC (11 bits) FlexRay
Frame

Header (2 bytes) Timestamp (2/4bytes) Data (up to 248/250 bytes)

Data Layer Protocol

Fig. 2: FlexRay communication model.

information would enhance overall quality of service, without
consuming additional communication bandwidth.

For this demonstration, we incorporate timing and health
state into the data segment and explore the applications of
such enhancements. This can be thought of as an additional
data layer protocol (as shown in Fig. 2) similar to the
Ethernet specification, comprising a data header and message
timestamp followed by the actual application data.The header
incorporates information such as sequence number (for multi-
cycle data), destination identifiers and health state (flags and
consecutive errors). The length of individual elements and
granularity of timestamps are configurable, but must have
the same value/meaning at all participating nodes.Moreover,
such a scheme can co-exist with standard off-the-shelf devices
on the same network, since these enhancements are hidden
from them. In [5], we show a potential application of such
extensions by coupling them with partial reconfigurability of
FPGAs for advanced safety critical systems with self-healing
capabilities and minimised recovery times. In [6], [7], similar
extensions are used for functional validation of the network.

Such features can be incorporated into the network interface
or can be handled at the computational logic in software.
Off-the-shelf controllers and integrated devices use either the
e-Ray IP model from Bosch [8] or the FRCC2100 from
Freescale [9], which provide limited scope for incorporating
such features at the interface, making a software-based ap-
proach the only possible solution for many existing designs.
For our demonstration, we have also integrated these features
into the datapath of a custom FlexRay controller.With FPGA’s
finding their way into automotive applications [10], the hard-
ware approach allows us to explore advantages of integrating
such extensions within the network interface.

FPT2013 Demo Paper

−471−

Fig. 3: Demonstration setup with ML605 development board.

III. DEMONSTRATION OVERVIEW

The goal of the demonstration platform is to incorporate
data segment enhancements to the in-vehicle communication
framework and explore applications of this approach. The plat-
form comprises a distributed ECU system on a Xilinx ML605
development board, which uses serial and Ethernet interfaces
to a standard desktop/laptop computer (host machine) shown
in Fig. 3 (see [7] for further details).

We use a three ECU system to model a simple brake-
by-wire application, which uses the on-board I/O modules
(switches and LEDs) as the sensor and actuator interfaces.
Microblaze processors form the ECU units, with applications
(tasks) loaded as software. The individual ECUs are networked
using the FlexRay protocol. Resource utilisation on the device
is shown in Table I. The host machine presents a graphical
interface (GUI) to the user, providing a means to visualise
vehicle speed, perform ECU configuration and display up-
dates/status from the ECUs.

A simplified diagram of the ECU communication is shown
in Fig. 4. Each ECU performs multiple tasks, indicated by the
different tx and exchanges messages msgy over the network.

• ECU1 is the sensor ECU. It reads the sensor data and
generates sensor commands (msg1).

• ECU2 is the actuator ECU. It receives sensor commands
and health messages (msg2) from ECU3. If health status
is normal, it acknowledges sensor commands (msg3) and
produces actuator commands; else it flags a fault state via
(msg3).

• ECU3 monitors transactions and generates health status
for ECU1. It also generates replay data (msg4) when
enabled.

In the demonstration, we look at applications of message
timestamps and health states, from the context of the safety-
critical brake-by-wire system. The different steps/states in the
demonstration are shown in Fig. 5 and are discussed below.

A. Platform Setup and Initialisation

The bitstream file is pre-generated and programmed on
the flash memory of the ML605 board. Following power-
on, individual ECUs can be chosen and programmed with
elf files from the graphical interface. When programmed, the

ECU1 ECU2

ECU3

Sensors Actuators

FlexRay

t0 t1 t2

t4t3

msg1

msg3

msg2,msg4

Fig. 4: Demonstration model.

Normal

Active
msg4

ECU3

Decode
msg4

ECU2

Discard
msg4

ECU2

Flag
error

ECU2

(a)

Normal

Active
msg2

ECU3

Active
msg3

ECU2

Decode
msg3

ECU1

Standby
mode

ECU1

(b)

replay attack

!replay attack

fault inject

!fault inject

Fig. 5: Demonstration Steps (a) Replay Attack, (b) Fault
injection.

ECUs synchronise over the internal network, and the status is
indicated on the graphical interface.

B. Timing awareness and Replay Attacks

A replay attack is a simple and effective technique to
adversely affect a network. Here, the attacker observes and
captures communication on the network and at a later time
replays this data on the communication medium. This attack
is effective, primarily because the messages on the network
do not have a notion of time, and hence the receiver cannot
differentiate between live data and replayed data. The Enable
Replay Attack button generates a replay attack on the system
and the following can be observed on the GUI:

• ECU3 generates valid msg4, with unsynchronised times-
tamps.

• ECU2 rejects msg4, flags invalid timestamps.
• No change in vehicle speed.

FPT2013 Demo Paper

−472−

• When Enable Replay Attack is disabled, active msg4 are
disabled.

C. Health State and Safety Critical ECUs

Safety critical functions in vehicles incorporate a fall-
back mode of operation, which ensures minimal operating
functionality in presence of errors. Here, we utilise health flags
on msg3 to indicate a fault in ECU1. We observe the transition
of ECU1 to fall-back mode, which is the minimal operating
state. The Enable Fault Injection button triggers a fault on the
sensor ECU and the following can be observed on the GUI:

• ECU3 generates fault msg2 corresponding to sensor mes-
sages.

• ECU2 flags faulty health state in msg3.
• ECU1 switches to fall-back mode, flags less precise

operative mode.
• When Enable Fault Injection disabled, active msg2 is

disabled.
• ECU2 flags normal state in msg3.
• ECU1 switches back to normal mode, flags normal oper-

ative mode.

D. Comparison of Hardware and Software Approaches

In the default setup, such enhancements are added into
the software that interfaces with the communication tasks.
The same functionality can be enabled in the hardware by
selecting hardware mode button from the graphical interface,
which causes our custom extensions in the FlexRay hardware
to be enabled. In this mode, we can observe faster and
more deterministic response rates for the above test instances,
compared to the software based approach.

From the timing awareness case, the timestamps on GUI
show that ECU2 msg4 rejection is faster and more deter-
ministic than the software approach. For the fault tolerant
scheme, ECU1 decodes fault flags in msg3 faster, resulting in
reliable turnaround times. Table II shows the response times
for hardware and software-based approaches for the different
demonstration cases.

The key idea here is that, the software-based approach re-
quires the data to be transferred through the network controller,
into the processor, before being processed in software. For
the hardware-based approach, the extensions on the network
controller process this information as the messages arrive,
initiating an interrupt when necessary, hence resulting in much
smaller latencies and better determinism. Such a low latency
approach is important in designing high performance network
units like gateways and FlexRay switches [11] (between
multiple sub-networks) that can process messages and make
decisions on the fly as opposed to a store and forward scheme.

IV. CONCLUSION

In this paper, we demonstrated how in-vehicle commu-
nication networks like FlexRay can be extended by using
extensions in a data-layer above the protocol layer. The
demonstration highlights the use of such enhancements in
different scenarios like health state communication and replay

TABLE I: Resource utilisation on XC6VLX240T.

Function LUTs FFs BRAMs DSPs

ECU1 10638 6984 48 5
ECU2 10601 6890 48 5
ECU3 10618 6886 32 5
Debug Logic 11629 8150 39 5

Total 43486 28820 167 20
(%) 28.8% 9.6% 40% 2%

TABLE II: Software and hardware performance comparison.

Enhancement Processing Software Hardware

Timing awareness

Timestamp
accuracy (Tx)

64 us
(2 slots min)

100 ns

Timestamp processing 3780 ns 180 ns

Health monitoring
Msg processing 3550 ns 180 ns
Turnaround (standby) 3650 ns 280 ns

attack protection, without requiring additional communication
slots/bandwidth. We also show that such data-layer protocols
offer faster and much more deterministic performance when
integrated into the network controller as opposed to integration
in software within the ECUs. We believe that this approach can
be adapted for other legacy and evolving in-vehicles networks
standards like CAN and time-triggered Ethernet, and will be an
important tool in improving safety, reliability and determinism
of in-vehicle communication.

REFERENCES

[1] CAN Specification, Version 2.0, R. Bosch GmBh, Std., 1991.
[2] FlexRay Communications System, Protocol Specification Version 2.1

Revision A, FlexRay Consortium Std., December 2005.
[3] SAK-CIC310-OSMX2HT, FlexRay Communication Controller Data

Sheet, Infineon Technologies AG, June 2007.
[4] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,

W. Trappe, and I. Seskar, “Security and privacy vulnerabilities of in-
car wireless networks: a tire pressure monitoring system case study,” in
Proc. of the USENIX conference on Security, 2010.

[5] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An Approach
for Redundancy in FlexRay Networks Using FPGA Partial Reconfigu-
ration,” in Proc. of the Design, Automation and Test in Europe (DATE)
Conference, 2013, p. 721 to 724.

[6] J. Sobotka and J. Novak, “FlexRay controller with special testing
capabilities,” in in Proc. of the Conference on Applied Electronics (AE),
2012, p. 269 to 272.

[7] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Accelerating Validation
of Time-Triggered Automotive Systems on FPGAs,” in Proc. of the
International Conference on Field Programmable Technology (FPT),
2013.

[8] Product Information : E-Ray IP Module, Robert Bosch GmbH, July
2009.

[9] FRCC2100 : Product Brochure, Freescale FlexRay Communications
Controller Core, IPextreme, Inc.

[10] S. Shreejith, S. Fahmy, and M. Lukasiewycz, “Reconfigurable Com-
puting in Next-Generation Automotive Networks,” Embedded Systems
Letters, IEEE, vol. 5, no. 1, p. 12 to 15, 2013.

[11] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz,
“Switched FlexRay: Increasing the Effective Bandwidth and Safety of
FlexRay Networks,” in Proc. of the Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2010.

FPT2013 Demo Paper

−473−

