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Reconfigurable Computing in Next-Generation
Automotive Networks
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Abstract—Modern vehicles incorporate a significant amount of
computation, which has led to an increase in the number of compu-
tational nodes and the need for faster in-vehicle networks. Func-
tions range from noncritical control of electric windows, through
critical drive-by-wire systems, to entertainment applications; as
more systems are automated, this variety and number will continue
to increase. Accommodating the varying computational and com-
munication requirements of such a diverse range of functions re-
quires flexible networks and embedded computing devices. As the
number of electronic control units (ECUs) increases, power and ef-
ficiency become more important, more so in next-generation elec-
tric vehicles. Moreover, predictability and isolation of safety-crit-
ical functions are nontrivial challenges when aggregating multiple
functions onto fewer nodes. Reconfigurable computing can play a
key role in addressing these challenges, providing both static and
dynamic flexibility, with high computational capabilities, at lower
power consumption. Reconfigurable hardware also provides re-
sources and methods to address deterministic requirements, reli-
ability and isolation of aggregated functions. This letter presents
some initial research on the place of reconfigurable computing in
future vehicles.

Index Terms—Automotive applications, automeotive electronics,
field buses, field-programmable gate arrays (FPGAs), reconfig-
urable architectures.

I. INTRODUCTION

EHICLES presently incorporate up to one hundred elec-
V tronic control units (ECUs), which control and coordinate
both critical and noncritical functions. Many existing functions
like antilock braking system (ABS) and adaptive cruise control
(ACC), as well as emerging capabilities like drive-by-wire, rely
on complex control algorithms that are computed under hard or
soft real-time requirements. These computations are performed
on data collected from a multitude of sensor nodes over the
in-vehicle communication infrastructure. Currently, such func-
tions are implemented as software on processor-based platforms
to provide flexibility and upgradability. The hard requirements
of real-time responsiveness and fail-safe operation imposed by
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critical systems determine the choice of node architecture and
in-vehicle communication protocols.

Modern automotive systems are moving on from the event-
triggered controller area network (CAN)—the most widely used
automotive networking protocol since the early 1990s—to more
advanced and complex time-triggered protocols like FlexRay
and switched Ethernet [1]-[3]. Time-triggered protocols like
FlexRay provide multiple bus access schemes to support deter-
ministic data transfer and priority-based volume data transfer,
to address the requirements of determinism, bandwidth and re-
liability. As more capabilities are added to vehicles, the number
of ECUs and functions per ECU increases, putting additional
strain on both the computational devices and the network. Com-
plex scheduling can extend the effective bandwidth of the net-
work without impacting reliability. A FlexRay switch exploits
branch-level and slot-level parallelism in the communication
schedule to optimise available bandwidth, allowing a switch to
support different schedules for each communication cycle [4].
This complex scheduling requires more capable nodes and net-
work controllers.

The consistently increasing number of functions adds fur-
ther challenges: additional weight, installation space and en-
ergy consumption. Multiple functions should ideally be aggre-
gated onto fewer ECUs to optimise these factors. In electric
vehicles, the total weight of the on-board computing and com-
munication systems and their power consumption are critical
factors. Leveraging the computational capabilities of reconfig-
urable hardware, it is possible to create optimised nodes that
integrate ECUs and network controllers on a single piece of
hardware, resulting in less power consumption, and weight [5].
Field-programmable gate arrays (FPGAs) provide us the flex-
ibility and resources to implement complex real-time applica-
tions while integrating networking functionality like FlexRay
switching or extensions like FlexRay to CAN/Ethernet/MOST
bridges.

FPGAs improve upon processor-based ECUs by providing
better determinism and segregation. The customizable and re-
configurable nature of the fabric can be exploited by implemen-
tations addressing a wide range of applications for modern and
future in-vehicle systems. Non-safety-critical applications like
multimedia and driver assistance can leverage the high com-
putational capability of FPGAs while taking advantage of dy-
namic reconfigurability to multiplex functions. FPGAs also en-
able techniques for implementing multiple levels of fault-tol-
erance and redundancy to support FPGA-based safety-critical
ECUs for the drive train and drive-by-wire systems.

II. PROPOSAL

The in-vehicle network architecture can be partitioned into
different domains based on performance and/or safety require-
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Fig. 1. Complete ECU on Reconfigurable Fabric.

ments. These require different levels of service, measured by
response time, bandwidth, redundancy, error detection among
others, and are often referred to as quality of service (QoS)
levels [6]. ECU functions are presently implemented as software
on general purpose processors. Discrete network interface chips
(or integrated IPs) enable access to the in-vehicle networks like
CAN, FlexRay, or others. Depending on the domain the imple-
mented functions fall into, an ECU may also have distinct inter-
faces to one or more of the in-vehicle networks.

Having a flexible ECU implemented on reconfigurable
hardware, allows for an architecture that can be seamlessly
integrated onto multiple domains. Fig. 1 shows an architecture
that encapsulates the interface (FlexRay, in our case) and the
functional unit. The primary function implements an algorithm
that requires complex computations to be performed on data
using a provided acceleration logic. Communication to the
sensors and other ECUs over the FlexRay bus is controlled
by the FlexRay communication controller (CC) and the bus
driver module. This ECU architecture on a reconfigurable
platform can be augmented to implement complex gateways
between multiple in-vehicle networks, among other possible
applications.

A. Non-Safety-Critical Systems

Non-safety-critical systems usually include user-oriented
features like multimedia, telematics, remote diagnostics, and
future systems like vehicle-to-vehicle (V2V) communication.
Such systems are characterized by the high volume of data
handled, high throughput requirements and complex computa-
tion, an area where FPGAs represent an ideal implementation
platform. Indeed the computational power of custom hardware
on FPGAs enables applications that would otherwise be in-
feasible on low-power processors. Since FPGAs implement
computation spatially, we can split the available resources
among multiple functions, maintaining the predictability of
each while ensuring complete isolation between them.

Furthermore, we can time multiplex applications that are not
needed concurrently by using dynamic partial reconfiguration
(PR) [7]; mutually exclusive functions are mapped to the same
dynamic region on the device, which can be reconfigured at run
time. Primary ECU functionality can be defined in the static,
nonchanging region of the device, while each dynamic region
would have specific functions or accelerators for the current op-
erating mode, as illustrated in Fig. 2. The illustration described
in Table I shows the different functions that can be integrated on
a smart-node and the distinct interfaces or modules required to
implement them. The FPGA design is partitioned to incorporate
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Fig. 2. Custom computing ECU systems on FPGAs using PR.

TABLE 1
MODES OF OPERATION
. : Modules in Modules in
Functionality Dynamic Region 1 ~ Dynamic Region 2
Park Assist Custom Logic Sensor Interfaces
Application Softcore Processor Custom Logic

Acceleration Interfaces
Cruise Control

Safety-critical ECU

Sensor Interfaces
Redundant ECU

Adaptive Logic
ECU Function

concurrent modules in different dynamic regions, considering
the computational and bandwidth requirements of each. The dy-
namic regions can then be reconfigured, when needed, to inte-
grate multiple nonconcurrent functions on the same node. This
architecture can be extended to integrate complex adaptive sys-
tems for current and future in-vehicle applications, on a much
smaller device.

Future automotive systems significantly increase the amount
of data that is gathered for processing and use algorithms that are
significantly more complex. Examples are driver assistance sys-
tems like pedestrian detection or blind spot warning. Software
implementations of such algorithms require specialized proces-
sors or multicore systems while hardware implementations pro-
vide more performance at lower power. The computational ca-
pabilities of FPGAs can be exploited to provide an efficient and
flexible solution that also integrates the communication inter-
faces to the various sensors and in-vehicle networks on the same
hardware, saving significantly on infrastructure. Furthermore,
PR can be employed to reuse the dynamic areas of an FPGA to
offload computations from another ECU, while these resources
are not being used by the current application.

Future technologies like V2V and vehicle-to-grid (V2G)
communication further push in-vehicle computing require-
ments. V2V and V2G allow vehicles to communicate relevant
data for advanced driver assistance, collision avoidance and
remote assistance. Communication is achieved over a multihop
self-organizing wireless network, comprising the mobile units
(vehicles) and fixed infrastructure [8]. Beyond the ad-hoc
network nature, authentication, security and timeliness of
data present further challenges, since delayed, fraudulent or
tampered data can result in misguiding commands to the user
[9]. Hardware implementation of security and authentication
protocols is more efficient, since many computations can be
easily handled at bit level in specialised hardware [10]. Recon-
figurable computing allows us to tightly couple the security



requirements with an application at marginal extra cost in a
manner that discrete devices cannot.

B. Safety-Critical Systems

Safety-critical systems like drive-by-wire, ABS or occupant
safety systems are hard real-time systems requiring high levels
of determinism and isolation. They may have to interface with
multiple in-vehicle networks to control and coordinate opera-
tions of critical systems like the drive-train. Safety-critical sys-
tems are often implemented to support fail-safe or fault-tolerant
operation. A fail-safe system ensures that a critical failure at
the node does not cause a catastrophic failure of other systems.
A node maintains a very basic set of tasks, without requiring a
halt due to fatal errors [11]. Fail-safe operation requires simpler
hardware and is hence often chosen in production for noncrit-
ical systems.

A fault-tolerant system is more robust and can adapt and re-
cover from faulty situations without severely degrading system
performance, often achieved by redundancy. FPGA-based de-
signs can instantiate multiple instances of identical ECUs within
the same device to aid redundancy while providing better deter-
minism [7], [11]. FPGA-based designs that incorporate PR pro-
vide alternative solutions for redundancy since PR allows us to
reconfigure only necessary logic rather than the whole FPGA.
In a fault-tolerant scheme, an error causes the logic to switch
to a redundant mode which operates with lower specifications.
PR enables us to reconfigure the faulty region alone, without af-
fecting current operations, resulting in faster turnaround times.
The fault detection logic on the FPGA triggers the switch to the
redundant mode of operation and the subsequent reconfigura-
tion of appropriate dynamic region(s), when a critical error is
detected. Also, multiple implementations of an application with
differing levels of error tolerance can be swapped in on the fly
to deal with changing conditions. In addition, a single region of
programmable fabric can be assigned as the redundant region
for multiple functions, rather than the need for distinct circuitry
for all systems to be present at the same time.

Deterministic behavior is easily factored into systems im-
plemented on reconfigurable hardware. FPGA-based designs
are synchronous, event-triggered systems and hence respond to
events in a deterministic manner. Hardware-level parallelism
can be exploited by designs to ensure that multiple simultaneous
events can be handled independently without contention. Spe-
cific events like single-event upsets (SEUs) can be mitigated in
logic, using either fail-safe or fault-tolerant design methods. In-
corporating PR, the erroneous ECU (or function) alone can be
reconfigured without affecting other regions, providing higher
determinism.

Processor-based ECU systems suffer from a lack of isolation
when many ECU functions are aggregated onto a single pro-
cessor. An operating system controls and coordinates the dif-
ferent software functions and shares processor resources, data
memory and caches, among them, which can result in unpre-
dictable contention unless specific steps are taken to manage
this. Moreover, the overhead and the associated delay in in-
terrupting one function to process another request in a tradi-
tional system depends on a range of parameters including the
current state of system and thus, can be unpredictable. On the
other hand, aggregating ECU functions onto an FPGA can be
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TABLE 11
SPARTAN-6 IMPLEMENTATION OF ECU ON CHIP

e FlexRay ~ Hardware = Complete
Utilisation CC Accelerator ECU
Registers 4922 4216 11778
LUTs 7969 3221 13566
Occupied Slices 2665 1088 5005
BlockRAM 13 11 60
DSP48 3 44 48
Power 291 mwW

Consumption

done by partitioning the device so that different functions do not
share hardware resources, thus allowing them to operate simul-
taneously and completely independent of each other. This setup
provides higher levels of determinism and isolation, allowing
for much better aggregation of safety-critical and/or non-safety-
critical applications on the same hardware, hence reducing de-
vice count.

III. RESULTS

We have already seen that FPGA-based custom solutions
provide multiple advantages over traditional processor-based
ECU systems. We now further quantify this by demonstrating
a custom FlexRay communication controller, designed to
leverage the heterogeneous resources on modern FPGAs. We
present an ECU node that combines this controller with a Mi-
croblaze softcore processor on a Xilinx Spartan-6 XC6SLX45
device. We have built a FlexRay traffic generator to allow us to
test the system. The ECU functions as a front-end processing
node for radar-based cruise control and is built using Xilinx
FFT IP cores and pipelined logic which performs target detec-
tion using the constant false alarm rate (CFAR) scheme [12].
The test data generates 1024 data points every 30 ms, which
is transformed to the frequency domain and processed by the
pipelined logic. Results are passed onto the FlexRay bus in
preconfigured slots. Table II details the resource utilization and
power consumption measured during operation in hardware.
Such an application would require specialized DSP processors,
since the latency cannot be met by software implementation
on a general purpose processor [12]. The key advantage here
is that integrating ECU functionality and the network interface
onto the same device only increases the total power usage
marginally, compared to similar architectures built around
standalone controllers like the Infineon CIC310 (which alone
consumes 150 mW of power) [13], and this interface can be
shared between multiple functions on the same FPGA.

Consolidating multiple nonconcurrent ECUs on a single
device reduces the number of ECU modules, bus drivers,
and the associated wiring, all contributing towards a better
in-vehicle ecosystem. Traditionally, each ECU uses discrete
(or integrated) controllers to access the bus. In an FPGA-based
node, PR can be utilized to consolidate multiple functions at
much lower power consumption, while sharing the interface
between multiple functions can be managed in hardware in a
predictable, fair manner.

We have integrated the above-mentioned cruise control
application with an intelligent parking solution [14] on a
Xilinx ML605 development board containing a Virtex-6 FPGA
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TABLE III
VIRTEX-6 IMPLEMENTATION OF ADAPTIVE SMART ECU

Mode Utilisation Switching  Dynamic
. . ) Time Power
Design  Operation Registers  LUTs
Idle 12223 13695 - 240 mW
PR Park Assist .
Cruise Control 4125 2130 9364 ms 340 mW
Static All Modes 32484 31558 NA 640 mW

(XC6VLX240T). The parking algorithm design is based on
fuzzy logic. Since these applications are mutually exclusive,
we can utilise PR to create an adaptive node, which modifies its
functionality based on current requirements. We use the Xilinx
hardware ICAP module (XPS_HW _ICAP), integrated with the
Microblaze processor, to manage reconfiguration when a mode
change is required. The various components are connected
using a Processor Local Bus (PLB) interface.

The PR region is normally filled by a blank bitstream in /DLE
mode. A mode switch is triggered by user commands, and is
transmitted over the FlexRay bus. The custom FlexRay con-
troller processes the received command, bypasses the datapath
and issues a high priority interrupt to the Microblaze processor,
initiating the reconfiguration process. The ISR reads the par-
tial bitstream from the compact flash card through the System
ACE controller and sends it to the ICAP. Table III shows the
implementation metrics for this design, including resources con-
sumed by these modules (in the partial region), and the dynamic
power consumption while operating in these modes. Since the
partial bitstream size is the same for both modes, the time taken
to switch between them is identical. The results also show that
the adaptive node has a definite advantage in terms of power
consumption and utilization compared to a purely static imple-
mentation, integrated as two isolated functions on the same de-
vice. Use of custom high speed reconfiguration controllers [15]
would enable a much faster turnaround time, making FPGA-
based fault-tolerant nodes more viable for safety-critical appli-
cations [16].

The Virtex-6 device was chosen for its native PR support.
However such a device would not normally be considered for
in-vehicle implementation due to higher power consumption
and cost. In the next-generation 7 series FPGAs from Xilinx, PR
is supported across the full range including the low-power de-
vices that would be used in vehicles, paving the way for integra-
tion of such smart nodes for in-vehicle adaptive systems. Xilinx
7 series FPGAs also provide intelligent clock gating, which can
help reduce the power consumption in /DLE mode. Further-
more, the Xilinx Zyng-7000 series, equipped with a dual-core
ARM processor and a fabric supporting PR, would enable ag-
gregation of multiple functions on the fabric while retaining tra-
ditional software capabilities. This type of consolidation is at the
heart of the reconfigurable paradigm for automotive systems.

IV. CONCLUSION

Complex functions are being added to in-vehicle systems to
enhance human machine interaction and performance. User-ori-
ented applications like multimedia or telematics require high
computational throughput. Meanwhile, safety-critical systems

demand determinism, time-bound response and fail-safe (or
fault-tolerant) operation. Reconfigurable architectures allow
us to cater to the demands of both ends of this application
spectrum, by providing high computational capability, pre-
dictability, determinism and better isolation of aggregated
functions, while also allowing us to augment functionality
through reconfiguration. While addition of newer functions
using a legacy scheme would have to be justified in terms
of the cost of additional ECUs and infrastructure, the recon-
figurable paradigm opens the doors for the proliferation of
more advanced and complex in-vehicle systems, but with the
reduced system footprint. Techniques like PR can be leveraged
to consolidate more functions on existing resources, allowing
top end vehicles to incorporate more cutting edge features.
Moreover, FPGAs can also be updated in-field to provide
improved functionality.

The potential advantages offered by next-generation FPGAs,
that incorporate encrypted bitstreams, gated clocks and PR, out-
weigh traditional limitations. FPGA-based designs can enable
future context-aware adaptive computational systems, with
lower power consumption and weight (through consolidation),
both of which are critical for next-generation electric vehicles.
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