
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015 453

Extensible FlexRay Communication Controller for
FPGA-Based Automotive Systems

Shanker Shreejith, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—Modern vehicles incorporate an increasing number
of distributed compute nodes, resulting in the need for faster
and more reliable in-vehicle networks. Time-triggered protocols
such as FlexRay have been gaining ground as the standard for
high-speed reliable communications in the automotive industry,
marking a shift away from the event-triggered medium access
used in controller area networks (CANs). These new standards
enable the higher levels of determinism and reliability demanded
from next-generation safety-critical applications. Advanced appli-
cations can benefit from tight coupling of the embedded computing
units with the communication interface, thereby providing func-
tionality beyond the FlexRay standard. Such an approach is highly
suited to implementation on reconfigurable architectures. This
paper describes a field-programmable gate array (FPGA)-based
communication controller (CC) that features configurable exten-
sions to provide functionality that is unavailable with standard
implementations or off-the-shelf devices. It is implemented and
verified on a Xilinx Spartan 6 FPGA, integrated with both a
logic-based hardware ECU and a fully fledged processor-based
electronic control unit (ECU). Results show that the platform-
centric implementation generates a highly efficient core in terms
of power, performance, and resource utilization. We demonstrate
that the flexible extensions help enable advanced applications that
integrate features such as fault tolerance, timeliness, and security,
with practical case studies. This tight integration between the
controller, computational functions, and flexible extensions on the
controller enables enhancements that open the door for exciting
applications in future vehicles.

Index Terms—Automotive systems, field-programmable gate ar-
rays, networks.

I. INTRODUCTION

MODERN high-end vehicles incorporate 100 or more
embedded computing units that implement advanced

capabilities such as automated parking, pedestrian detection
with automatic braking, and other safety or comfort features.
These algorithms perform complex processing on data gathered
from a network of sensors, to produce control sequences for dis-
tributed actuators. The communication bandwidth and quality
of service required for such advanced electronic control units
(ECUs) exceed the capabilities of the event-triggered controller
area network (CAN) protocol, which has been pervasive in

Manuscript received September 5, 2013; revised January 30, 2014; accepted
April 22, 2014. Date of publication May 16, 2014; date of current version
February 9, 2015. The review of this paper was coordinated by Dr. S. Anwar.

S. Shreejith is with the School of Computer Engineering, Nanyang Techno-
logical University, Singapore 639798, and also with TUM CREATE, Singapore
138602 (e-mail: shreejit1@ntu.edu.sg).

S. A. Fahmy is with the School of Computer Engineering, Nanyang Techno-
logical University, Singapore 639798 (e-mail: sfahmy@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2014.2324532

automotive systems until now. Moreover, next-generation in-
vehicle systems, specifically in electric vehicles that have a high
level of automation, demand higher determinism, leading to the
widespread adoption of time-triggered communication schemes
and protocols such as FlexRay and time-triggered Ethernet [1].
FlexRay is gaining ground as a de facto communication stan-
dard for safety-critical functions such as drive-by-wire, cruise
control, and adaptive braking systems, while also facilitating
communication for noncritical ECUs.

Although time-triggered networks such as FlexRay provide
higher determinism and communication bandwidth, increas-
ing proliferation of embedded computing units increases the
associated communication overheads and power consumption,
which can degrade overall system performance. Typically, each
ECU has a discrete communication controller (CC) to manage
its access to the network. We show that, by closely coupling
the controller with the ECU and extending the predefined
communication framework, advanced and intelligent embedded
compute units with enhanced capabilities such as fallback and
fault tolerance can be designed. This scheme enhances the over-
all quality and performance of the system. However, such evo-
lutions and extensions of the protocol cannot be implemented
using off-the-shelf controllers or platform-agnostic solutions,
and they require a modular flexible implementation, which is
ideally implemented in reconfigurable logic. Moreover, recon-
figurable technology enables us to merge the controller and
multiple applications on the same device, while preserving the
necessary isolation between them, and partial reconfigurability
can be exploited to reduce power consumption further [2].

In this paper, we present an architecture-optimized FlexRay
CC, which integrates configurable extensions that augment
the CC’s capabilities beyond those defined by the FlexRay
standard. The controller provides enhancements to the data
path, such as programmable width timestamping, data filtering,
header insertion, and processing functions, which are abstracted
away from the host function. Our flexible architecture can be
used to design advanced ECUs on reconfigurable hardware,
which consume less power and offer increased consolidation,
while providing enhanced capabilities that are impossible to im-
plement using standard controllers or IP cores. We also quantify
the potential of the proposed controller using case studies based
on existing and evolving automotive applications that are safety
critical and data intensive. Our experiments show that advanced
features, such as high-speed mode switching for fault-tolerant
ECUs, low-latency data handling for high-performance gate-
ways, timeliness, and security for messages can be efficiently
achieved by integrating such extensions within the controller
data path, rather than offloading them to the processing logic.

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

454 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

The remainder of this paper is organized as follows. In
Section II, we give a brief introduction to the FlexRay specifica-
tion and protocol enhancements described in the literature and
the related work in this area. Section III details the controller
architecture. Implementation results and comparison with other
implementations are provided in Section IV. In Section V,
we present case studies using the customizable extensions and
show the benefits of implementing advanced features this way,
with a discussion of the approach in Section VI. Finally, we
conclude this paper and outline future work in Section VII.

II. RELATED WORK

The move toward time-triggered network standards in au-
tomotive systems has been driven by the more advanced re-
quirements imposed by advanced mission-critical and comfort
features in future vehicles. Widespread event-triggered net-
works such as CANs fail to address the requirements of such
applications.

Time-triggered CAN (TT-CAN) is an extension of the CAN
protocol that enables time-triggered operation by enforcing
a slot-based structure, while retaining backward compatibil-
ity with the standard CAN. However, TT-CAN suffers from
dependability issues and limited bandwidth; thus, it did not
gain widespread adoption. Some research sought to overcome
these limitations through hardware extensions on the network
controller [3].

In recent years, FlexRay has emerged as the standard for
time-triggered communication in the automotive domain. How-
ever, most recently, new hardware developments have seen
time-triggered Ethernet emerge as a possible replacement for
FlexRay, although standard communication protocols are still
under development. The enhancements we present in this paper
can be similarly applied to other time-triggered standards,
although we use FlexRay to demonstrate the concepts within
a realistic certifiable environment.

A. The FlexRay Protocol

The FlexRay protocol is developed and standardized by the
FlexRay consortium and has since been adopted by various
automotive companies in production vehicles [4]. These ve-
hicles are complaint with the FlexRay AUTOSAR Interface
Specification Standard [5], which is the industry standard for
the software specification of FlexRay nodes, by which any
controller implementation must comply.

The fundamental element of the media access scheme in the
FlexRay protocol is the communication cycle, which is repeated
over time, as shown in Fig. 1. Each cycle is comprised of four
segments [6].

• The static segment uses a static slot-based access mech-
anism and is used to send critical data in a deterministic
manner. Any ECU can send a frame of data in the one (or
more) slot(s) assigned to it. The slot width is fixed across
all nodes on the network.

• The dynamic segment uses a dynamic slot-based access
scheme enabling communication of event-triggered data
of arbitrary length. The slot width is dynamic, depending

Fig. 1. FlexRay communication cycle.

Fig. 2. (a) Standard and (b) switched FlexRay network topologies.

on the amount of data that needs to be transmitted, and
access to the medium is controlled by priorities assigned
to the ECUs.

• The symbol window is used to transmit special symbols
such as the “wake-up” pattern used to wake up sleeping
nodes to initiate communication.

• Network idle time is the idle period used by nodes to make
clock adjustments and align and correct the global view of
time to maintain synchronization.

A typical FlexRay-based ECU integrates a discrete (or em-
bedded) CC and the computational function, which is usually
implemented as a software algorithm on a processor to provide
flexibility and upgradability. The ECU can communicate over
the bus, through the CC, by transmitting framed data in the
slot(s) assigned to it in the static or dynamic segments.

Multiple nodes may share the same slot in different cycles,
as in the case of odd/even cycle multiplexing where one set
of nodes is assigned slots in all odd cycles, whereas another
set of nodes (which may include some from the first set) is
assigned slots in all even cycles. This scheme of cycle-level slot
multiplexing can lead to higher overall bandwidth utilization.
Fig. 2(a) shows a typical network setup, where node B2 may
send data to node A1 in slot 1 of cycle 1, whereas node A1 may
reply in slot 1 of cycle 2. The active star is an active repeater
that passes information from one branch to all other branches.

The switched FlexRay network is a novel concept that can
extend bandwidth without compromising reliability and de-
terminism [7]. The switch architecture allows exploitation of
branch parallelism, whereby the switch will repeat frames only
on branches that contain the intended recipient [8]. This allows
the same slots to be used simultaneously by multiple nodes
in the same cycle, and the intelligent FlexRay switch schedules
the branch to which information has to be relayed [9]. Thus,
as shown in Fig. 2(b), while node B2 may be sending data

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 455

to node A1 in slot 1 of cycle 1, node D1 might be sending
data to node C2 in the same slot, and the switch, knowing the
schedule, connects the corresponding nodes through the switch
fabric. By utilizing slot multiplexing and branch parallelism,
each slot within a cycle may have different destinations and,
thus, different switch configurations.

Research on FlexRay networks has been approached from
diverse directions in the literature. In [10], Forest highlights
challenges such as physical-layer design, cycle and schedule
design, and selection of termination, sync, and startup nodes,
which were all simpler design considerations for FlexRay’s
predecessor, i.e., CAN.

B. Scheduling

Much work has been done on scheduling communication on
the shared bus. Optimization of the static and dynamic segments
of the FlexRay protocol has been widely addressed in [11] to
[15], among others. In [16], a detailed survey of scheduling al-
gorithms is presented, and a comparison between optimization
strategies such simulated annealing, genetic, hybrid genetic,
and probabilistic approaches applied by various algorithms
is provided. Given a set of communication requirements, all
algorithms try to optimize the number of communication slots
and cycles that are required to schedule the different messages,
satisfying all requirements. The optimization in most cases
is to find the minimum number of communication slots that
can solve the problem, hence consuming minimum bandwidth.
Alternatively, the problem can be formulated to maximize the
number of unused slots, which provides flexibility for future
expansion.

C. Network-Level Optimizations

In [17], an approach to improve the energy efficiency of
a FlexRay controller by allowing it to be controlled by an
intelligent CC (ICC) is discussed. The ICC, which takes over
bus operations from the ECU when the latter goes to sleep,
prevents the ECU from being woken by erroneous transmis-
sions, allowing the node to achieve higher power efficiency. The
proposed architecture and its validation are also discussed in
this paper, using a proprietary implementation of the FlexRay
CC that is not available to the research community. Similarly,
in [18], the architecture of an FPGA implementation of the
FlexRay controller with add-on features to aid functional ver-
ification is described. The features are primarily aimed at a
verification framework and hence do not point in the direction
of optimizations or enhancements for improving node/network
functionality beyond standard implementations.

D. Controller Implementation

The work in [19] is the only one to discuss the implementa-
tion of a FlexRay CC on reconfigurable logic. It discusses the
protocol operations control module, which controls the actions
of the core modules of the CC. However, no specific details
about hardware architecture are presented, and the implementa-
tion is designed purely to implement the existing specification,
with no new features. In [20] and [21], implementation of the

FlexRay CC is described using the specification and description
language as the platform and later translation to hardware using
Verilog. These studies approach the protocol from a high level
of abstraction and, hence, do not discuss hardware design de-
tails or architectural optimization. A comprehensive outline of
the FlexRay Bus Guardian specification and approaches to im-
plement it on FPGAs have also been discussed in [22] and [23].

Bosch and Freescale both offer implementations of the
FlexRay controller that can be mapped to a wide range of
platforms [24], [25]. These are largely platform independent,
suitable for implementing on application-specific integrated
circuits or FPGAs. However, they are not optimal for imple-
mentation on reconfigurable hardware since they do not fully
utilize the heterogeneous resources available in the fabric. For
instance, the E-Ray IP core from Bosch, which is a dual channel
controller, does not directly instantiate FPGA primitives such as
digital signal processing (DSP) blocks or Block RAM but uses
general-purpose logic to implement these functions.

By efficiently utilizing these hardware primitives, we can
build custom controllers that are more efficient for architecture-
specific implementations, while leaving aside logic for imple-
menting functional components of the ECU. This approach
results in limited portability between platforms but superior
utilization and power efficiency for FPGA-based ECU imple-
mentations. Portability is also becoming less of an issue as
FPGA manufacturers standardize hardware blocks across all
their device families in a given generation. For example, the
DSP48E1 primitive is available on all 7-series FPGAs from
Xilinx, as well as the Zynq ARM-FPGA platform.

We aim, through this paper, to enable a number of investiga-
tions in the space of FlexRay on reconfigurable hardware. We
focus on providing a flexible CC, which features rich extensions
for enhanced applications and architecture optimizations for
low device utilization, providing considerable savings in terms
of area and power. The objective is to show how an FPGA-
centric implementation can result in interfaces that provide
advanced capabilities and power efficiency for FPGA-based in-
vehicle systems.

III. ARCHITECTURE DESIGN

A node on the FlexRay network consists of a CC, an ap-
plication running on a host ECU, and multiple bus drivers to
independently support two communication channels. The host
ECU is the computational implementation of an algorithm like
adaptive cruise control or engine management, and it may com-
municate with other ECUs or sensor nodes over the network.
The CC ensures conformance with the FlexRay specification
when transmitting or receiving data on the communication
channel. The Bus Driver (BD) handles the bit stream at the
physical level and provides the physical level interface to the
communication channel. The host ECU monitors the status
of the CC and the BD independently and configures them
appropriately at startup or during runtime.

A. Communication Controller

The FlexRay CC switches between different operating states,
based on network conditions and/or host commands, ensuring

456 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 3. Architecture of custom Flexray CC.

conditions defined by the FlexRay protocol are met at all times.
The CC architecture, as shown in Fig. 3, comprises the Protocol
Engine (PE), which implements the protocol behavior, and
the Controller Host Interface (CHI), which interfaces to the
host ECU.

The CHI module communicates with the host and handles
commands and configuration parameters for the FlexRay node.
These parameters are defined for the particular cluster that
the node is operating on, and they are initialized during the
node’s configuration phase. The CHI feeds the current state and
operational status to the host for corrective action if necessary.
There are transmit and receive buffers and status registers for
the data path to isolate control and data flow. The CHI may
also incorporate clock-domain crossing circuitry to enable the
different interfaces to work in distinct clock domains.

The clock synchronization (CS) and medium interface layer
(MIL) submodules of the PE implement specific functions
of the protocol, which are controlled and coordinated by the
protocol management module (PMM). These submodules sup-
port multiple modes of operation and can alter their current
operating mode in response to changes in any of the parameters,
error conditions, or host commands. The PMM ensures mode
changes are done in a way that complies with the FlexRay
specifications. The MIL handles the transmission and reception
of data over the shared bus. It encodes and decodes data,
controls medium access, and processes decoded data to ensure
adherence to protocol specifications. The CS module generates
the local node clock, synchronized to the global view of time.
It measures deviation in the node clock on a per-cycle basis so
that it stays synchronized with other nodes in the cluster.

Timing in a FlexRay node is defined in macroticks and
microticks. Microticks measure the granularity of the node’s
local internal time and are derived from the internal clock of
a node. A macrotick is composed of an integer number of
microticks. The duration of each local macrotick should be
equal within all nodes in the cluster. The FlexRay protocol

uses a distributed clock correction mechanism, whereby each
node individually adjusts its view of time by observing the
timing information transmitted by other nodes. The adjustment
value is computed using a fault-tolerant midpoint algorithm. A
combination of rate (frequency) and offset (phase) correction
mechanisms is used to synchronize the global time view of
different nodes. These corrections must be applied in the same
way at all nodes and must fulfil the following conditions.

1) Rate correction is continuously applied over the entire
cycle.

2) Offset correction is applied only during the NIT in an
odd cycle and must finish before the start of the next
communication cycle.

3) Rate correction is computed once per double cycle, fol-
lowing the static segment in an odd cycle. The calculation
is based on values measured in an even–odd double cycle.

4) Calculation of offset correction takes place every cycle
but is applied only at the end of an odd cycle.

Rate correction indicates the number of microticks that need
to be added to the configured number of microticks per cycle
and may be negative, indicating that the cycles should be
shorter. Offset correction indicates the number of microticks
that need to be added to the offset segment of the network idle
time and may also be negative.

The FlexRay bus supports two independent channels for data
transmission and reception. The transmission rate can be set
at 2.5, 5, or 10 Mb/s. The protocol also defines multiple bus
access mechanisms, in the form of static slots for synchronous
time-triggered communication and dynamic slots for burst-
mode event-triggered (priority-based) data transfer. Special
symbols can be transmitted within the symbol window, such as
wake-up during operation (WUDOP) and collision avoidance
symbol (CAS). During the network interval time, all nodes
synchronize their clock view with the global clock view so
that they stay synchronous. Each transmitted bit is represented
using eight bit times to ensure protection from interference. At
the receiving end, these are sampled, and the majority voted
to generate a voted bit. Transmission and reception must be
confined to slot boundaries, and transmission (or reception)
across slot boundaries is marked as a violation. The node should
transmit only on slots that are assigned to it (either in the
static or dynamic segments). Each node is assigned a key slot,
which it uses to transmit startup or synchronization frames
(along-with data).

B. Implementation and Optimizations of Custom CC

The state of the PMM, at any instant, reflects the current
operating mode of the CC. The PMM triggers synchronized
changes in the CC and MIL submodules, and describes the
different operating modes of the node, as shown in Fig. 4.
These mode changes can be triggered by host commands or
by internal and/or network conditions encountered by the node.
Table I describes the different commands issued by the host
and how the operation of the CC is modified in response. As
shown, certain commands demand an immediate response from
the controller, whereas others are to be applied at specific points

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 457

Fig. 4. FlexRay CC modes of operation.

TABLE I
COMMANDS FROM HOST THAT AFFECT CC OPERATING MODES

within the communication cycle. This distinction makes the
control flow more complex than the case of a straightforward
finite state machine.

Fig. 5. Protocol management module architecture.

The FlexRay protocol allows a cluster and its associated
nodes to switch to sleep mode to conserve power. When any
node needs to start communication on the network, a wakeup
sequence is triggered by the host by putting the CC into the
wakeup state. In the wakeup state, the node tries to awaken
a sleeping network by transmitting a wake-up-pattern (WUP)
on one channel. Sleeping nodes decode this pattern and trigger
a node wakeup. Nodes that have dual channel capability then
trigger a wakeup on the other channel to complete a cluster-
wide wakeup. The node cannot, however, verify the wakeup
trigger at all connected nodes since the WUP has no mechanism
to communicate the ID of the nodes that have responded. The
nodes then follow the startup procedure to initialize commu-
nication on the cluster. The startup operation also caters for
reintegration of a node onto an active network. To do so, the
node must start its local clock so that it is synchronized with
the network time.

Within the startup state, the clock synchronisation startup
(CSS) logic in the CS module is initialized, which extracts
timing information from a pair of synchronization frames re-
ceived from the bus and starts the macrotick generator (MTG)
in alignment with them. Over the next few cycles, it monitors
the deviation of its clock from the actual arrival time of sync
frames on the bus, and if these are within predefined limits,
the process is signaled as successful. If, at any point, the ob-
served deviation is beyond the configured range, the integration
attempt is aborted, and the node restarts the process. Once it
integrates, the node moves to the active state, with a clock that
is synchronized with the network. After successfully joining the
network, the PMM normally follows a cyclic behavior switch-
ing between active and passive states, in response to network-
node conditions, causing synchronized changes in all modules.

In our design, the PMM also encapsulates Wakeup and
Startup. Confining the Wakup and Startup operations within the
respective PMM states result in a hierarchical structure, as in
Fig. 5, with the combined state encoding stored in a microcoded
ROM. Combining the two functions into the same module also
allow us to share resources between the two operations, which
are not required concurrently, using a simplified control flow.
Since CS and MIL are also controlled by Wakeup and Startup
logic for their respective operations, integrating them with the
PMM results in centralized control for all operating conditions,
simplifying interfaces to the submodules. The responses to
different conditions or stimuli is now reduced to the process
of generating appropriate addresses for the ROM, similar to

458 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 6. Clock sync module architecture.

the program counter implementation on a standard processor.
The ROM is efficiently implemented using distributed memory
(lookup tables, LUTs) because of its small size.

Fig. 6 shows a simplified architecture of the CS module
in our design. The CS module generates the clock, computes
the deviations of the generated clock from the distributed
timing information, and applies corrections. The CS module
is comprised of two concurrent operations (or submodules):
first, the MTG process that controls the cycle counter and
the macrotick counters and applies the rate/frequency and
offset/phase correction values; and second, the clock synchro-
nization process (CSP) that performs the initialization at cycle
start, the measurement and storage of deviation values during
the cycle, and the computation of the offset and rate correction
values. In addition, the CSS module is responsible for starting a
synchronous clock when the CC tries to integrate into either an
active network or initiate communication on an idle network.
The CSP state machine controls and coordinates the operations
of the CS module by interacting with the CSS and MTG
submodules.

During startup, the CSS process monitors the arrival time
of the even synchronization frames and generates the global
reference time by computing the initial macrotick value as

Macrotick = (pMacroInitialOffset+ gdStaticSlot

×(ID − 1)) mod gMacroPerCycle

where pMacroInitialOffset, gMacroPerCycle, and gdStaticSlot
are FlexRay parameters. The computation is implemented using
cascaded DSP48A1 slices, whose inputs are multiplexed be-
tween channels A and B to handle startup requests from either
channel. If a subsequent odd frame arrives within the predefined
window, the integration attempt is flagged as successful by the
CSS module, and the CSP commands the MTG state machine
to start the macrotick clock (MTClk) using the computed
macrotick value for this channel. The MTG then generates the
macrotick clock from the macrotick clock (uTClk) using the
configured parameter values.

Fig. 7 shows the clock deviation computation for each cycle
once the CC successfully integrates onto the network. The
measuring cycle refers to the duration of the static segment,

Fig. 7. Rate and offset computation by MTG and CSP.

Fig. 8. Fault-tolerant midpoint illustration for seven deviation values.

Fig. 9. CAM organization and fault-tolerant midpoint computation for offset
correction.

where sync-nodes transmit synchronization frames that are
used to compute rate and offset corrections. During each mea-
surement cycle, the node measures the deviation of time of
arrival registered at the node from the calculated time of arrival
of the synchronization frame, which is stored in memory. At
the end of measurement phase, the node computes the offset
and rate correction factors from the stored values using a
fault-tolerant midpoint algorithm. The operation is shown in
Fig. 8, for a cycle that recorded seven deviation values. The
real challenge here is that a network may be configured without
dynamic and symbol window segments. Hence, the offset and
rate computations have to be completed, consuming a minimum
number of cycles to ensure that correction values are available
to be applied at the network interval time segment.

Fig. 9 shows our solution to the midpoint computation
mechanism, expanded from the slotID and deviation store in
Fig. 6, for an even cycle. The fault-tolerant midpoint algorithm
computes the rate and offset corrections that are to be applied to
the macrotick clock. During normal operation, the CSP module
handles the computation and storage of individual deviation
values and the computation of midpoint correction values. As
a frame is received, its ID is used to address the slotID RAM,

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 459

Fig. 10. MIL architecture.

the output of which is used as the address for the deviation store,
mimicking a content-addressable memory. The deviation from
the expected arrival time of sync frames to their actual arrival
time is stored in the deviation store. The upper and lower pipes
perform dynamic sorting (descending and ascending) as and
when the deviation values are replayed from the store, at the
end of the cycle. Dynamic sorting is implemented using a first-
in–first-out (FIFO) structure and multiple comparators. Hierar-
chical comparison is performed from top to bottom (bottom to
top) in the upper (lower) pipe. At any level, if the input value
is greater (less) than the existing values at that level, the input
value is pushed into the FIFO at that level.

For each ID, the multiplexer chooses the minimum deviation
among the two channels, in the case of offset computation,
and the difference between the corresponding channels in a
pair of cycles, in the case of rate computation. The mid-
point deviation is the average deviation over the correspond-
ing stages in the upper and lower pipes, the stage chosen
depending on the number of valid deviation values stored.
The MTG uses the computed midpoint deviation values to
make corrections to the node’s view of time. Utilizing the
tagging established by the content-addressable memory and
the pipelined architecture, the midpoint computation can be
efficiently implemented at the system clock rate to meet pro-
tocol requirements. A more conventional architecture would
require a higher clock rate for this computation. Architectural
optimization also enables us to utilize fewer resources while
maximizing performance.

The MIL instantiates independent transmit and receive transit
buffers to manage temporary storage of a frame, as shown in
Fig. 10. The MIL ensures that medium access occurs only at
slots assigned to the node. The access control state machine
handles the bus access, depending on the current slot counter
value and slot segment. The access control logic generates and
maintains the slot counter and the slot segment, which are used
by other modules in the CC. Within each slot, the logic gener-
ates control signals called action points, which mark points at
which transmission can start (in static and dynamic slots) or end
(in dynamic slots). These signals trigger the encoding logic to
start transmission of frame in the transmit buffer, provided the
current slot is allocated to this node.

The data to be transmitted is moved to the transmit buffer
over a 32-bit data bus. If no data are available for transmission,
the node transmits a null frame. The module also handles
encoding and serial transmission of data (at the oversampled
rate) to be transmitted in the current slot. Decoder functionality
is also integrated into this module, which performs bit-strobing,
majority-voting, byte-packing, and validation of received data
at the end of the slot.

The transmit interface is implemented using shift registers
with gated clocks. This allows us to provide multiple functions
with the same set of registers: encode and transmit data bytes,
control signals, and symbols. The shift register reads each byte
from the transmit buffer, encodes it within the shift register, and
pushes it to the transmit line at the transmit clock, along with the
transmit control signals. At the receiving interface, sampling,
bit strobing, and edge synchronization are implemented using
a sequence of shift-register modules: one set samples the data
and produces a majority voted bit every cycle, and the second
set performs byte-packing of the data. This system offers the
advantage of simpler control and higher throughput. The byte-
packed data are written into the receive transit buffers. As
and when protocol errors or violations are detected (such as
reception crossing boundary points), appropriate flags are set
locally, which are used to validate the data at the slot boundary.
At the end of the current slot, the flags are checked to signal
valid data, which can then be written into the receive data
memory in the host interface.

The control modules are efficiently implemented as multi-
ple state machines at different levels to ensure parallel and
independent operation. The transmit buffers prefetch data from
the transmit data store in the CHI at the start of each slot
to minimize latency. Similarly, the data location for each
received frame is precomputed to enable complete data to
be written to the receive data store in the CHI before the
start of the next frame, minimizing latency between the time
of frame reception and it being passed to the Host. Also,
the data available flag and interrupts (if enabled) are set, as
soon as the first D-word is written into the receive buffer
in the CHI. The data store and the associated control and
status store in the data path mimic a content-addressable ar-
chitecture in Block RAM to enable prefetching and address-
ing using the slot–cycle–channel complex, as required by the
protocol.

Two such MILs are instantiated within the controller to
support independent dual channel operation. These modules
may transmit and receive data in the same slots, as configured
by the host. To facilitate this, we have implemented a config-
urable scheduler, which can be configured for priority access
(Channels A over B or vice versa) or first come first served
mode. High word-length interconnects are used between the
data store in the host interface and transit buffers within the
MIL module to ensure low-latency prefetch and write back for
both channels. Using such an architecture, the prefetching can
be handled at system clock rates, without high latency. The
physical layer can be configured to support multiple bit rates
of 2.5 Mb/s, 5, or 10 Mb/s. The usage of shift-register-based
encoder/decoder modules simplifies the logic requirements for
handling multiple bit rates.

460 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 11. Receive path extensions on custom CC versus traditional schemes.

The interface to the host processor is designed to be compat-
ible with the Processor Local Bus (PLB) interface and AMBA
Advanced eXtensible Interface 4 (AMBA AXI4) standards, two
of the widely used high-performance low-latency peripheral
interconnects for system-on-a-chip (SoC) designs. The host
interface supports parameterized widths and a wide range of
system and interrupt configurations to provide a rich interface
to the host processor (or logic). The control path comprising
the command, status, and configuration registers are isolated
from the data path and implemented as a register stack. Data
corresponding to each cycle, slot, and channel is addressed us-
ing an indirect addressing technique. The data pointer is stored
at an address determined by the cycle–slot–channel complex.
This allows us to use true dual-port Block RAM modules and
simpler address generation as opposed to the complex FIFO-
based schemes used by existing controllers. Another advantage
is that the memory can be configured as a cyclic buffer resulting
in an indefinite memory space, as opposed to the limited
memory space available in a FIFO-based scheme. The memory
space is dynamically allocated at the end of each slot that is
configured as a receive slot, only if valid data has been received,
thus optimizing memory usage.

Asynchronous FIFOs are instantiated between the host inter-
face and the control/data stores, enabling the host interface to
run at a clock speed independent of the PE. Using such a low-
level design paradigm, we are able to leverage FPGA resources
within the modules of the FlexRay Controller, thereby saving
the remaining area for host implementation.

C. Controller Data Path Extensions

Traditional controllers depend on the host processor to read
the received data and determine the usefulness of it. The con-
troller issues a data interrupt, to which the processor responds
with a status register read followed by a data read request, sub-
sequently receiving the data. These overheads are wasted in the
case of frames with irrelevant data (such as obsolete or untimely
data) or multicycle data frames where the processor cannot
process the received fragment until more data is available. In

the case of critical data frames such as error state that require
immediate attention, the latency introduced by the traditional
scheme limits the performance of safety-critical systems, which
rely on host-triggered recovery. With custom extensions, such
exceptions can be handled at the controller, which processes the
information and informs the host processor (using interrupts).
The host retains absolute control but is not involved in the low-
level processing, which is handled instead by the configurable
extensions. Fig. 11 describes the functioning of such extensions
on the receive path of the controller

On the receive path, the extensions can monitor the received
data for matching FlexRay message ID, application-based cus-
tom headers or timestamp information, which are contained in
the data segment of the FlexRay frame. The FlexRay message
ID can be used for application/user-defined communication in
dynamic segment data frames. An interesting use case is to
embed the error status of the ECU into the message ID, which
can trigger a fault-recovery procedure in safety-critical units.
Application-specific headers may be embedded into the data
segment in any frame. Such headers convey information about
the data contained in the frame, such as sequence number and
length, and are particularly useful in the case of large data
transfers, which are accomplished as multicycle transactions on
the FlexRay bus. Information in the headers can be used by the
controller to repack the multicycle data. The header processing
extensions on the receive path can look for such information
and reorganize the segmented data and present it as a single
transaction to the host.

Similarly, the timestamp validation extension can be config-
ured to reject frames, which are obsolete or untimely. On the
transmit path, these extensions can insert relevant headers and
timestamp information, as configured. Timestamp resolution
is configurable, with a finest resolution of one macrotick and
maximum length of 4 bytes (4 B). The header is entirely user
configurable and can be matched at the receiver by program-
ming the corresponding registers.

Such extensions on the controller can help extend the func-
tionality and overcome the inherent limitations of the FlexRay
network and are impossible to achieve on discrete controllers.

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 461

TABLE II
FLEXRAY NODE PARAMETERS

TABLE III
CC IMPLEMENTATION ON HARDWARE

Our pipelined architecture in the transmit and receive paths
allows us to add this functionality with no additional latency.
By standardizing such extensions, automotive networks such as
FlexRay can be enhanced to implement a data-layer segment
that provides security against replay attacks (using timestamps)
and a standard methodology to communicate the health state
of ECUs (using headers) [26]. Although such enhancements
can be handled by the application in software, this would incur
additional processing latency and unwanted complexity at the
software level (e.g., timing synchronization).

IV. IMPLEMENTATION RESULTS

To validate our design and to measure the actual performance
on hardware, we have implemented the design in a low-power
Xilinx Spartan 6 XC6SLX45 FPGA with a host module de-
scribed using a state machine, modeling a complete ECU. We
choose the Spartan 6 as it is a low-cost low-power device, which
would be a likely choice for an automotive implementation. To
test the network aspects, we emulate a FlexRay bus within the
FPGA, using captured raw bus transactions from a real FlexRay
network (using Bosch E-Ray controllers) communicating using
a predefined FlexRay schedule; these are stored in onboard
memory. The information is replayed to create a cycle accurate
replica of the transactions on the bus. Our CC is plugged
into this FlexRay bus and configured with the same FlexRay
parameters. Table II shows a specific set of parameters that was
used for our experiments.

Table III details the resource utilization of the individual
modules of the controller and the power estimates generated

TABLE IV
COMPARISON OF IMPLEMENTATIONS

by the Xilinx XPower Analyzer tool, using activity information
from simulation. We have configured the core to support all
extensions on the transmit and receive path: a 2 byte data header
and a 4 bytes timestamp. The maximum achievable frequency
for this configuration was 88 MHz. The core is initialized with
parameters using a logic-based host model over a PLB/AXI
interface. The actual power measured using a power supply
probe during operation in hardware is also shown.

Table IV compares the resource utilization of our implemen-
tation against the platform agnostic E-Ray IP core on the same
Altera Stratix-II device. For the purpose of comparison, the
consolidated utilization on a Xilinx Spartan 6 is also shown
in the same table. It can be observed that the hardware-centric
approach results in much better utilization of the heterogeneous
resources, leading to a compact implementation. The design
can be also easily ported to other Xilinx and Altera devices,
as well as to other platforms with a little more effort. The
resource utilization and optimizations that we have achieved in
comparison with the platform agnostic E-Ray core is significant
enough to justify the somewhat reduced portability. With DSP
inference disabled, our implementation consumed 8282 LUTs
and 5248 registers (on the Stratix-II), which is still less than the
E-Ray core. Another advantage is that the power consumption
at full operation on a Spartan 6 device is below the power
consumed by typical standalone controller chips such as the
Infineon CIC-310, which uses the E-Ray IP module [27] and
consumes about 150 mW in normal operating mode.

A key advantage of implementing the CC in the FPGA fabric
is the ability to compose more intelligent ECU nodes with
enhanced communication capabilities on a single device. As an
example, we have integrated a fully functional ECU node that
combines this controller with a MicroBlaze softcore processor
on a Xilinx Spartan 6 XC6SLX45 device, as in Fig. 12. The
ECU functions as a front-end processing node for radar-based
cruise control and is built using Xilinx Fast Fourier Transform
(FFT) IP cores and pipelined logic that performs target detec-
tion using a constant false alarm rate (CFAR) scheme [28]. The
test data generate 1024 data points every 30 ms, which are trans-
formed to the frequency domain by the FFT module. The CFAR
module performs detection on the frequency-domain data using
multistage pipelined logic and writes results into the dual-port
RAM. The processor is then interrupted, and it consolidates the
data over a configurable number of cycles. The controller is
configured with parameters defined in Table II. Thus, at cycles
32 and 62, consolidated results are sent on the FlexRay bus.

462 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 12. Integrated ECU function on Spartan-6 FPGA.

TABLE V
SPARTAN-6 IMPLEMENTATION OF ECU ON CHIP

Table V details the resource utilization and power consumption
measured during operation in hardware. Such an application
would otherwise require specialized DSP processors since the
latency cannot be met by software implementation on a general-
purpose processor [28]. Similar performance can be obtained
by interfacing high-performance DSP devices such as the
Analog Devices ADSP-TS202S [29] with standalone FlexRay
controllers like the Infineon CIC-310 or Freescale S12XF [30],
but the node would consume much higher power overall than
the integrated FPGA implementation. The key advantage here
is that integrating ECU functionality and the network interface
on the same device only increases power usage marginally, and
this interface can be shared between multiple functions on the
same FPGA.

MicroBlaze offers a low-power low-throughput processing
option for sensor applications. Alternatively, hybrid platforms
such as the Xilinx Zynq can be used for more compute-intensive
and real-time applications since they offer a more powerful hard
ARM processor. By using AXI-4 for communication between
the CC and the host, our design can be used with the ARM
in the Zynq (consuming 5612 registers, 8685 LUTs, and two
DSP48E1s) or with a MicroBlaze soft processor or a custom
hardware ECU.

V. CASE STUDIES

We now present three distinct case studies that showcase
the effectiveness of the custom extensions in the context of
existing or proposed automotive applications. In each use case,

Fig. 13. Test setup for brake-by-wire system.

we observe that the application can leverage the intelligence
built into the controller, leading to smarter and more efficient
systems when compared with standard implementations.

A. Error Detection and Fallback for Safety-Critical Systems

Safety-critical systems employ redundant or fallback modes,
which enable minimum guaranteed functionality, even in the
presence of hardware/software faults. One of the critical param-
eters in such a system is the time taken to switch to fallback
mode once a fault has been identified. For this experiment,
we model a brake-by-wire system comprising two MicroBlaze
ECUs on the FlexRay network: the brake sensor ECU, which
interfaces to the sensor modules, and the actuator ECU, which
issues commands to the braking system. Each ECU incor-
porates fallback logic, which is triggered when a fault-status
message is received. These status messages are generated by
centralized fault detection logic that monitors bus transac-
tions for unsafe commands/data. The sensors and actuators
are modeled using memory. Sensor data are generated from
a Sensor BRAM, and commands are pushed to the Actuator
BRAM. The sensor ECU combines inputs from the different
sensor interfaces periodically and passes it over the FlexRay
bus to the processing ECU. The processing ECU uses these
data to compute commands and issues them to the actuators.
Both ECUs run software routines on the popular FreeRTOS
platform (denoted RT). A simplified model of the test setup is
shown in Fig. 13.

To mimic the behavior of off-the-shelf controllers, we disable
the custom extensions on the CC. A fault-status message is
triggered on the sensor ECU system by configuring invalid
data in the Sensor BRAM, causing incorrect sensor data to
be issued to actuator ECU over the FlexRay bus. The fault-
detector logic detects the error and transmits the error code in
the next slot assigned to it. A normal controller decodes this
message and passes it to the MicroBlaze processor, where the
data is processed to trigger fallback mode. The latency from the
transmission of the error message to the triggering of fallback
mode is largely determined by the interrupt-based data passing
mechanism used in off-the-shelf controllers. Even for an RTOS-
based (real-time) system, this latency can be significant and was
measured at an average of 9.05 ms for our implementation, as
shown in Fig. 14.

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 463

Fig. 14. Latency distribution for interrupt-based critical data processing.

By moving such critical data processing to the controller, it
becomes possible to significantly reduce this delay and enhance
the determinism of the system. To quantify this, a processing
extension that detects packets on a user-configured slot with a
user-specified data header is enabled on the CC. On detecting
this combination, the controller can either process the remain-
ing data for specific patterns or trigger an interrupt. In this
particular experiment, it is configured to process the critical
error flags and the consecutive error numbers to decide whether
to trigger fallback mode. This generates a direct interrupt to the
MicroBlaze processor and enables fallback mode, resulting in a
faster and more consistent turnaround time (average 50× faster
than RT), as shown in Fig. 14.

We have also repeated the experiment using the Xilinx
Standalone operating system (denoted SA), the lightweight
minimalist OS for MicroBlaze. It is shown in Fig. 14 that,
although the simplified SA OS results in lower average interrupt
latencies than the RT, it results in a larger spread of latencies.

B. Time Awareness for Messages

A major security risk in time-triggered systems such as
FlexRay is the lack of time awareness for messages. By mon-
itoring bus transactions, an external agent can easily employ
simple replay attacks, flooding the bus with stale data, as de-
scribed in [31]. The FlexRay protocol leaves this vulnerability
to the higher layer applications to manage. In our controller, the
transmit path allows messages to be optionally timestamped to
make the message time aware, at the cost of increased payload
size. By inserting the header and timestamp within the data
segment of the FlexRay frame, it is transparent to other FlexRay
controllers present on the network, ensuring interoperability
with off-the-shelf controllers. With timestamps enabled, the
receive path can be configured to automatically drop frames
that are outside an allowed time window. This creates a basic
security layer at each ECU, which can be augmented further by
incorporating encryption/decryption logic in the data path.

An interesting use case is in high-performance gateways that
move data between network clusters. With traditional inter-
faces, messages arriving from each interface will be forwarded
to the switch logic, which decides whether to forward the data
to their destination or drop them because they have expired. By
building intelligence into the controller, the validity of data can
be determined before they are forwarded to the switching logic.
We modify the experimental setup described in Fig. 13 earlier
to model a gateway configured to discard untimely data, either
at the processing logic (MicroBlaze), mimicking off-the-shelf
interfaces, or at the interface using our enhanced controller

Fig. 15. Timestamp processing at interface.

extensions. Our tests show that the interface can process the
timestamp and discard the message within 180 ns of frame re-
ception. A standard approach consumes a further 3.6 and 9.1 μs
on average, for SA and RT, respectively, as shown in Fig. 15,
since the data must be processed by the host.

C. Handling Volume Data at Interfaces

Applications such as radar-based cruise control utilize vol-
ume data gathered by the radar sensors to compute distance and
relative velocity of other vehicles in the vicinity. A complete
data set from a sweep is required by the processing logic to
determine these parameters, and these data are received over
many data slots. The processing ECU must reassemble these
fragments before the data can be processed. By moving this
packing/repacking to the controller interface, the processing
logic can overlap the computation with data reception, enabling
it to run at lower frequencies and, hence, consume less power.

To demonstrate this, we use the experimental setup for the
radar-based cruise control ECU, described earlier in Section IV.
The data from the radar sensor are received over the FlexRay
bus in bursts of 256 bytes, which is the maximum payload size
defined by FlexRay standard. The MicroBlaze runs software
routines on top of the Xilinx Standalone OS. In a normal
design, the processor is interrupted each time a block of data is
received. The processor responds with the first data read request
12 ms (worst-case) after receiving the interrupt, with the burst
read consuming a further 3.84 ms. This is repeated over four
cycles to complete the data transfer, cumulatively consuming
63.36 ms.

We then test the same application with an extension that
allows the controller to intelligently buffer the entire frame
in a buffer, only interrupting the processor at the end of the
transaction. This enables the processor to issue back-to-back
reads from the controller, completing the entire data movement
in 27.36 ms from the reception of the interrupt. To provide a
balance between multicycle and single-cycle data, the design
has been constrained to handle up to four data cycles at full
payload size. To support larger data sizes, larger buffer memory
must be added to the controller, resulting in higher device
utilization; however, this may be a tolerable cost for some
ECUs, and the CC architecture supports it.

The experiment was also repeated using the FreeRTOS-
based software, which provided better determinism than the
Standalone-based scheme, resulting in a lower worst-case in-
terrupt latency, as shown in Fig. 16.

464 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 16. Data repacking for multicycle data transfers.

Fig. 17. Overheads for including headers and timestamps.

VI. DISCUSSION

The FlexRay protocol does not define the usage of headers
within the data segment, which is entirely dependent upon user
implementation. While the usage of headers and timestamps
within data provides the aforementioned advantages, it may re-
sult in significant payload overheads for small data sizes, while
also limiting the payload capability of a FlexRay frame. Fig. 17
compares the overheads associated with different configurable
values for the application header and timestamp, as a function
of the payload size. As can be observed, at lower payload sizes,
the inclusion of a timestamp and application header results in
large overheads, but for large payload sizes, the penalty paid
is very small. Beyond the maximum payload size of 256 B,
additional data have to be handled as multicycle transactions,
causing the curve to flatten out for higher payload sizes. Since
the application header and timestamp data are inserted within
the data segment of the FlexRay frame, it is transparent to other
FlexRay controllers on the network, ensuring interoperability
with standard controllers.

We have purposefully designed the controller’s architecture
to coexist with ECU functions on the same FPGA. Doing so
allows us to leverage the computational capabilities of FPGAs
for implementing ECU functions while no longer requiring
a discrete network controller. We can also incorporate partial
reconfiguration to allow multiple applications to interface with
the bus through a single controller and to define fault-tolerant
ECUs for safety-critical functions [32].

Furthermore, timestamps and data processing capabilities
within the controller can also be used extensively for functional
validation of novel applications, architectures, and network
features. On a large enough FPGA such as the Virtex-7, we can
integrate up to ten ECUs, network controllers, and the actual
network to create a validation platform (replicating an actual
car network) for functional verification [33].

VII. CONCLUSION

In this paper, we have given an overview of the FlexRay
protocol and the generic architecture of the CC, as defined
by the specification. By identifying and extracting operations
that are mutually exclusive or natively parallel, we have de-
signed a custom controller that takes advantage of the het-
erogeneous resources on modern FPGAs, resulting in reduced
logic footprint and low power consumption, while providing
a host of features beyond those described by the standard.
Advanced computational capabilities such as fault tolerance
and function consolidation can be built into nodes that integrate
complex ECU functions with advanced CCs. This approach
also improves power consumption compared with the use of
discrete controllers. We hope that our flexible and configurable
architecture can be leveraged for continued research on intelli-
gent FlexRay nodes and switches on FPGAs, leading to wider
adoption of reconfigurable hardware for in-vehicle applications.

We aim to investigate extending this controller for use with
partial reconfiguration to provide flexible use of the FPGA
fabric, enabling further sharing of communication resources
between ECUs. We intend to develop intelligent FlexRay nodes
and switches on reconfigurable hardware that are energy effi-
cient and that will allow us to explore more advanced network
setups. Finally, the principles demonstrated in this paper are
also applicable to other time-triggered interfaces, and we hope
to explore this for time-triggered Ethernet.

REFERENCES

[1] S. Chakraborty et al., “Embedded systems and software challenges
in electric vehicles,” in Proc. Des., Autom. Test Eur. (DATE) Conf.,
Mar. 2012, pp. 424–429.

[2] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Reconfigurable comput-
ing in next-generation automotive networks,” IEEE Embedded Syst. Lett.,
vol. 5, no. 1, pp. 12–15, Mar. 2013.

[3] I. Sheikh, M. Hanif, and M. Short, “Improving information throughput
and transmission predictability in Controller Area Networks,” in Proc.
IEEE Int. Symp. Ind. Electron. (ISIE), Jul. 2010, pp. 1736–1741.

[4] J. Kötz and S. Poledna, “Making FlexRay a Reality in a Premium Car,”
in Proc. Convergence Transportation Electronics Association, SAE Int.,
2008, pp. 391–395.

[5] Specification of FlexRay Interface Version 3.2.0, AUTOSAR Std.
[Online]. Available: http://www.autosar.org

[6] FlexRay Communications System, Protocol Specification Version 2.1
Revision A, FlexRay Consortium Std., Dec. 2005. [Online]. Available:
http://www.flexray.com

[7] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz, “Switched
FlexRay: Increasing the effective bandwidth and safety of FlexRay
networks,” in Proc. Conf. Emerging Technol. Factory Autom. (ETFA),
Sep. 2010, pp. 1–8.

[8] T. Schenkelaars, B. Vermeulen, and K. Goossens, “Optimal Scheduling
of Switched FlexRay Networks,” in Proc. Des., Autom. Test Eur. (DATE)
Conf., Mar. 2011, pp. 1–6.

[9] M. Lukasiewycz, S. Chakraborty, and P. Milbredt, “FlexRay switch
scheduling—A networking concept for electric vehicles,” in Proc. Des.,
Autom. Test Eur. (DATE) Conf., Mar. 2011, pp. 1–6.

SHREEJITH AND FAHMY: EXTENSIBLE FlexRay CC FOR FPGA-BASED AUTOMOTIVE SYSTEMS 465

[10] T. Forest et al., “Physical architectures of automotive systems,” in Proc.
Des., Autom. Test Eur. (DATE) Conf., Mar. 2008.

[11] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “FlexRay schedule
optimization of the static segment,” in Proc. Int. Conf. Hardware/Software
Codes. Syst. Synthesis (CODES+ISSS), 2009, pp. 363–372.

[12] K. Schmidt and E. G. Schmidt, “Message scheduling for the FlexRay
protocol: The static segment,” IEEE Trans. Veh. Technol., vol. 58, no. 5,
pp. 2170–2179, Jun. 2009.

[13] E. G. Schmidt and K. Schmidt, “Message scheduling for the FlexRay
protocol: The dynamic segment,” IEEE Trans. Veh. Technol., vol. 58,
no. 5, pp. 2160–2169, Jun. 2009.

[14] J. J. Nielsen and H. P. Schwefel, “Markov chain-based Performance eval-
uation of FlexRay dynamic segment,” in Proc. Int. Workshop Real Time
Netw., 2007, pp. 1–6.

[15] B. Kim and K. Park, “Probabilistic delay model of dynamic message
frame in FlexRay protocol,” IEEE Trans. Consum. Electron., vol. 55,
no. 1, pp. 77–82, Feb. 2009.

[16] X. He, Q. Wang, and Z. Zhang, “A survey of study of FlexRay systems
for automotive net,” in Proc. Int. Conf. Electron. Mech. Eng. Inf. Technol.,
Aug. 2011, pp. 1197–1204.

[17] C. Schmutzler, A. Lakhtel, M. Simons, and J. Becker, “Increasing en-
ergy efficiency of automotive E/E-architectures with intelligent commu-
nication controllers for FlexRay,” in Proc. Int. Symp. Syst. Chip (SoC),
Oct./Nov. 2011.

[18] J. Sobotka and J. Novak, “FlexRay controller with special testing capabil-
ities,” in Proc. Int. Conf. Appl. Electron. (AE), Sep. 2012, pp. 269–272.

[19] J. Y. Hande, M. Khanapurkar, and P. Bajaj, “Approach for VHDL and
FPGA implementation of communication controller of FlexRay con-
troller,” in Proc. Int. Conf. Emerging Trends Eng. Technol., ICETET ,
Dec. 2009, pp. 397–401.

[20] Y.-N. Xu, Y. E. Kim, K. J. Cho, J. G. Chung, and M. S. Lim, “Implemen-
tation of FlexRay communication controller protocol with application to a
robot system,” in Proc. IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Aug./Sep. 2008, pp. 994–997.

[21] Y.-N. Xu, I. Jang, Y. Kim, J. Chung, and S.-C. Lee, “Implementation of
FlexRay protocol with an automotive application,” in Proc. Int. SoC Des.
Conf. (ISOCC), Nov. 2008, pp. II-25–II-28.

[22] P. Szecowka and M. Swiderski, “On hardware implementation of FlexRay
bus guardian module,” in Proc. Int. Conf. Mixed Des. Integr. Circuits Syst.
(MIXDES), Jun. 2007, pp. 309–312.

[23] G. N. Sung, C. Y. Juan, and C. C. Wang, “Bus guardian design for
automobile networking ECU nodes compliant with FlexRay standards,”
in Proc. Int. Symp. Consum. Electron., Apr. 2008, pp. 1–4.

[24] Product Information: E-Ray IP Module, Robert Bosch GmbH, Jul. 2009.
[25] FRCC2100: Product Brochure, Freescale FlexRay Communications

Controller Core, IPextreme, Inc., Campbell, CA, USA.
[26] S. Shreejith and S. A. Fahmy, “Enhancing communication on automo-

tive networks using data layer extensions,” in Proc. Int. Conf. Field
Programmable Technol. (FPT), Dec. 2013, pp. 470–473.

[27] SAK-CIC310-OSMX2HT, FlexRay Communication Controller Data
Sheet, Infineon Technologies AG, Munich, Germany, Jun. 2007.

[28] J. Saad, A. Baghdadi, and F. Bodereau, “FPGA-based radar signal pro-
cessing for automotive driver assistance system,” in Proc. Int. Symp.
Rapid Syst. Prototyping, Jun. 2009, pp. 196–199.

[29] F. Greg, “Estimating Power for the ADSP-TS202S TigerSHARC Proces-
sors,” Analog Devices, Norwood, MA, USA, EE170, 2006, Tech. Rep.

[30] MC9S12XF512 Reference Manual, Rev.1.20 ed., Freescale Semiconduc-
tors, Denver, CO, USA, Nov. 2010.

[31] I. Rouf et al., “Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study,” in Proc. USENIX
Conf. Security, 2010, pp. 1–16.

[32] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An approach
for redundancy in FlexRay networks using FPGA partial reconfiguration,”
in Proc. Des. Autom. Test Eur. (DATE) Conf., Mar. 2013, pp. 721–724.

[33] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Accelerating validation
of time-triggered automotive systems on FPGAs,” in Proc. Int. Conf. Field
Programmable Technol. (FPT), Dec. 2013, pp. 4–11.

Shanker Shreejith (S’13) received the B.Tech. de-
gree in electronics and communication engineering
from University of Kerala, India, in 2006. Since
2011, he has been pursuing Ph.D. degree with the
School of Computer Engineering, Nanyang Techno-
logical University, Singapore, working on reconfig-
urable computing in automotive systems with TUM
CREATE, Singapore.

From 2006 to 2008, he was a Design and Devel-
opment engineer with ProcSys, India. From 2008 to
2011, he was a Scientist with the Vikram Sarbhai

Space Centre, Trivandrum, India, under the Indian Space Research Organisa-
tion (ISRO).

Suhaib A. Fahmy (M’01–SM’13) received the
M.Eng. degree in information systems engineering
and the Ph.D. degree in electrical and electronic
engineering from Imperial College London, London,
U.K., in 2003 and 2007, respectively.

From 2007 to 2009, he was a Research Fellow
with Trinity College Dublin, Dublin, Ireland, and
a Visiting Research Engineer with Xilinx Research
Labs, Dublin. Since 2009, he has been an Assistant
Professor with the School of Computer Engineering,
Nanyang Technological University, Singapore. His

research interests include reconfigurable computing, high-level system design,
and computational acceleration of complex algorithms.

Dr. Fahmy is a Senior Member of the Association for Computing Machinery.
He received the Best Paper Award at the IEEE Conference on Field Pro-
grammable Technology in 2012 and the IBM Faculty Award in 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

