Security Aware Network Controllers for Next Generation
Automotive Embedded Systems

Shanker Shreejith
School of Computer Engineering
Nanyang Technological University

shreejit1 @ntu.edu.sg

ABSTRACT

Modern cars incorporate complex distributed computing sys-
tems that manage all aspects of vehicle dynamics, comfort,
and safety. Increased automation has demanded more com-
plex networking in vehicles, that now contain a hundred or
more compute units. As these networks were developed as
silos, little attention was given to security early on. How-
ever, this has become a key challenge in the automotive do-
main, as these systems have been shown to be susceptible to
various attacks, with sometimes catastrophic consequences.
Addressing security in such systems requires consideration
of the network and compute units, both hardware and soft-
ware, and complex real-time constraints. We present an ap-
proach that integrates application authentication, message
encryption and network access control into a smart network
interface, without compromising network determinism. A
custom interface with partial reconfiguration support on FP-
GAs enables seamless integration of security at the interface,
offering a level of security not possible with standard layered
approaches.

Categories and Subject Descriptors

C.2 [Computer Communication Networks|: General—
Security

1. INTRODUCTION

Modern cars now employ a hundred or more electronic
control units (ECUs) that together take care of many vehi-
cle features, from entertainment and comfort, to increasingly
critical aspects of the drive train. These networks evolved
over time and are built in a modular fashion with each ECU
connected to the required network through a network con-
troller. As connectivity within the car and to the outside

This work was supported by the Singapore National Research
Foundation under its Campus for Research Excellence And Tech-
nological Enterprise (CREATE) programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

DAC ’15 June 07 - 11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744907 .

Suhaib A. Fahmy
School of Computer Engineering
Nanyang Technological University

sfahmy@ntu.edu.sg

Attacker
msge
Gateway R 2|
A
msgy I msg;,| msge
msgs msgs,| msg,
| msgi msgs |
{ Visualiser
| ¥ 1 | 1 | 1
ECU1 ECUQ ECUJ}

Figure 1: An attacker exploiting a compromised gateway in
a vehicle to gain access to internal network messages either
as a passive hacker (observer) or an active one (injecting
messages/commands).

world increases, concerns have arisen about the security of
these previously siloed networks. Indeed, multiple invasive
and non-invasive attacks have been shown to be effective in
modern vehicles, ranging from simple techniques like fuzzing
and replay attacks to more complex attacks involving com-
promised software on ECUs [1, 2, 3, 4]. Fuzzing attacks
involve injection of commands/data on the network in a
bid to force ECUs into certain vulnerable modes (like en-
abling flashing) or to cause them to halt due to unexpected
command-data combinations. Replay attacks involve cap-
turing network messages and re-using them at a later time
to spoof commands to an ECU. As wireless communication
becomes increasingly common in modern vehicles, whether
in wireless sensor systems, internet-enabled services, or (fu-
ture) vehicle-to-vehicle (V2V) communication, new path-
ways become available to potential attackers without even
requiring physical access.

Automotive networks were originally closed, with only the
mandatory on-board diagnostics (OBD) port providing an
interface to the outside world. Since these OBD ports pro-
vide direct and/or bridged access to both critical and non-
critical networks, they represent an ideal point for a hacker
to gain access via an (infected) OBD dongle. Malicious soft-
ware or hardware provides another pathway, mostly intro-
duced through non-approved after-market upgrades. These
can be used to launch internal attacks (observations or ma-
nipulations) on messages or other ECUs since the network
provides implicit full bus access to all components. Fig. 1
shows an example scenario where an attacker is able to ob-
serve messages through a compromised network gateway.
Once access to the network is gained, it might be possible
to install defective software on safety-critical ECUs over the

network, compromising their functionality, as was demon-
strated in [1]. These exploits are possible since the vehicular
networks offer no mechanism to authorise devices that inte-
grate and communicate on a specific network (other than
physical connectivity) and no way to prevent compromised
ECUs from accessing the network. Attempting to solve these
weaknesses in software is challenging because of the logical
separation between computation in the ECU, and physical
bus access in the network controller.

In this paper, we present a novel approach to this prob-
lem with the use of a reconfigurable network controller that
incorporates application authentication and network access
regulation. The authenticity of an ECU’s boot-ROM con-
tents (bootloader, application and configuration) are verified
before the network interfaces are enabled, thus preventing
a compromised ECU from accessing the network. Further-
more, the network interface integrates data encryption and
imposes network access restrictions using obfuscation and
cross-layer techniques, thus preventing unauthorised devices
from integrating (and thus communicating) over the net-
work. By integrating this functionality in a reconfigurable
controller, the scheme does not impact the real-time charac-
teristics of the network and is abstracted from the applica-
tion. We demonstrate this approach on the time-triggered
FlexRay network, with a Xilinx Zynq platform. The pro-
posed method establishes a configurable hardware security
layer, which can be built upon to provide adaptable security
schemes.

2. BACKGROUND

Vehicular networks are physically separated into high and
low performance networks, based on several factors like crit-
icality of functions, latency requirements and communica-
tion bandwidth, and are typically bridged via a central gate-
way. High performance networks link together safety-critical
ECUs and sensors, like engine control and drive-by-wire sys-
tems, while low-performance networks connect non-critical
ECUs like window controls and door locks. These networks
are also served by different protocols, like high-speed CAN
(HS-CAN) and FlexRay for high performance networks and
low-speed CAN (LS-CAN) and local interconnect network
(LIN) for low performance networks, each providing the re-
quired bandwidth and reliability guarantees necessary for
the respective applications. However, telematics and driver
assistance systems often require information from both net-
works, and are often connected directly to both network
classes, creating unwanted bridging [1, 2].

Security of in-vehicle communication (IVC) has recently
been subject to investigation. In [1, 2|, the authors analyse
the security of computation and communication systems by
exploring different attack vectors on actual vehicles. Their
experiments highlight some common weaknesses in existing
network architecture like network bridging and configura-
tion request acceptance from a low priority network, as well
as protocol limitations, all of which provide multiple at-
tack planes for a potential hacker. While the experimental
approach exposed many practical attack possibilities, ana-
lytical evaluation of threats and effects has also been ex-
plored [3, 4, 5]. These analyses evaluate the threats and
damages based on multiple factors (severity, success prob-
ability) [3] or classify ECUs based on safety effect levels of
threats [4] with extensions to wireless interfaces [5]. Simi-
larly, the EVITA project focuses on evaluating the security

of vehicular systems, focusing on futuristic V2V and the
enabled-vehicles concept. The project evaluates possibili-
ties for formal verification and efficient hardware/software
co-design for future communication systems [6, 7].

Techniques have also been proposed to address these chal-
lenges to some extent. Standard methods like cryptography
and anomaly detection were proposed in [5] to provide data
security, though these are not resistant to replay attacks.
A scheme based on trust and access control lists to verify
message authenticity on CAN-based ECU systems was pro-
posed in [8]. This method provides a higher level of security,
but does not prevent an unauthorised device (either newly
plugged in or compromised) from accessing network traffic.
Software based automotive security solutions are also pro-
posed in [9], but such software must be protected against
tampering and manipulation from invasive and internal at-
tacks. Alternatively, automotive hardware-based security
modules (HSMs) and secure hardware extensions (SHESs)
have been proposed, providing high levels of tamper pro-
tection for V2V and IVC [10]. Such HSMs are attached as
co-processors, and the security is invoked at a higher level
(i.e., after the messages have been received) incurring a la-
tency and power cost.

We aim to integrate application security and network pro-
tection within the network interface (NI) of the ECU system,
thus abstracting such details from the application, enabling
seamless migration to the secure domain. Extending the NI
using extensions offers features that do not work at the soft-
ware level, such as the scheme in [11] which improves energy
efficiency using smart network interfaces that can sleep their
respective ECUs or [12] that provides data layer extensions
for enhanced communication.

Our extensions to a standard NI on reconfigurable hard-
ware enable integration of network protection without incur-
ring additional latency, thus preserving timing guarantees.
Integrating security at the interface also enables us to lever-
age network properties to provide dynamic run-time security
and eliminates software intervention during application au-
thorisation.

3. CONCEPT

An effective security mechanism should (1) authenticate
and authorise the software on all ECUs (in the secure net-
work) and (2) must only allow authorised devices to access
the broadcast network. While HSMs/SHEs provide meth-
ods to implement software authentication/authorisation, the
broadcast nature of bus protocols allows any plugged in off-
the-shelf component to observe the bus and integrate on to
it by deducing network parameters. Our method aims to
circumvent these issues with the enhanced NI that tightly
integrates security within and around the communication
controller (protocol implementation).

To authenticate software, an agent external to the ECU
must be involved, like the HSM unit which is attached as a
co-processor. We integrate this functionality within the cus-
tom NI whereby, the interface logic reads the contents of the
boot-ROM and verifies the authenticity of the contents using
a one-way hash function, whose expected value is embedded
in the hardware at production. If the authenticity is verified,
the authorisation to use this hardware by the application is
verified against the unique identifier of the hardware, which
is generated at run-time by a circuit that maps intrinsic
properties of the device to its unique identifier. Since intrin-

Zynq PS

0
Interconnect e’

Authentication
or
Communication

Controller

PRR

Figure 2: High-level system architecture on Xilinx Zynq.

sic properties cannot be exactly controlled by manufactur-
ing processes and are difficult to predict, no two identical
devices generate the same identifier using such circuits, thus
providing unique method to tie down software for a partic-
ular hardware platform. Only after the boot-ROM contents
are authenticated and authorised for this hardware, will the
communication controller (CC) be enabled, thus preventing
a compromised ECU from accessing the network.

Once an ECU has been authorised by its NI, it can start
normal communication over the shared bus. However, since
the bus is of broadcast nature, malicious hardware on the
bus could still decode the communication and integrate on
to the bus. To circumvent this, we integrate synchronised
timestamping and cross-layer encryption using light weight
ciphers within the CC, which provides configurable data
security and obfuscates protocol header information. The
timestamps prevent replay attacks since stale data is re-
jected at the CCs of receiving ECUs. The obfuscated head-
ers mean that an unauthorised device cannot decode the
protocol parameters by observing them. Hence, only de-
vices authorised with a pre-shared key (from the OEM) can
integrate and communicate over the network. We also in-
corporate a method to update the keys at run-time using
symmetric cryptography, which can be further improved us-
ing light weight asymmetric schemes.

4. CASE STUDY

In this section, we describe the system architecture of our
case study for a FlexRay-based ECU on a Xilinx Zynq plat-
form. We use partial reconfiguration (PR) to dynamically
invoke the authentication and CC modules as and when re-
quired, thus optimising area and power consumption. We
integrate an SHA-1 hashing function and the PRESENT
lightweight cipher [13] for software encryption and data ci-
phering. The proposed concept can be used with other
time-triggered network architectures which may eventually
replace FlexRay in vehicles and using other standard hash-
ing/cipher functions.

Hardware Architecture: A high level architecture of
the proposed system based on the Xilinx Zynq platform is
shown in Fig. 2. The Zynq processing system (PS) integrates
highly capable ARM cores and a number of peripheral de-
vices like DDR Memory Interface, Non-volatile memory in-

terface (over SPI), Ethernet and others. The PS is tightly
coupled with programmable logic (PL), which can be used
to implement custom functions and/or accelerators, commu-
nicating over High Performance (HP) or General Purpose
(GP) ports. The application code, boot-loader and the PL
bitstream(s) are stored in non-volatile memory (NVM), as
is common for automotive ECUs.

Within the PL, we instantiate the software authentication
mode or the FlexRay CC in a partially reconfigurable region
(PRR). During startup, the PRR instantiates the authenti-
cation logic by default. The authentication logic comprises
an SHA-1 one-way hashing function and a Ring Oscillator-
based Physically Unclonable Function (RO-PUF), along with
the supporting logic in the static region to support commu-
nication with the PS. The UID register is a configurable
width register (8-bit to 128-bit) that stores the unique iden-
tifier for the hardware-software combination on this ECU
and is later used by the FlexRay network as the identifier
of the specific ECU. The Status register holds the status of
the software authentication process and is used for enabling
the interface MUXes that connect the PRR to the FlexRay
bus and to the PS (for configuring the FlexRay CC). The
control state machine (CSM) is responsible for initialising
data movement between the PS and PL (for authorisation)
and also for initialising the reconfiguration of the PRR to
load the FlexRay interface, once ECU software is autho-
rised. The Config. module manages reconfiguration of the
PRR.

Authentication Function: During system initialisation,
after the Zynq PS has completed the boot sequence and pro-
grammed the PL with the default bitstream, the sys_init()
function initialises the interfaces to the PL logic. The Con-
trol State Machine (CSM) in the PL logic then initialises
a DMA read from the non-volatile memory to compute the
hash value of the memory content, including the bootloader,
the default bitstream for the PL and the application soft-
ware (called the boot image). The DMA reads are directed
into the hashing function and are double buffered to improve
the performance. The SHA-1 core is custom designed and
operates on 16 32-bit blocks of data (size of DMA burst) to
iteratively compute the SHA hash of the entire boot image.

In parallel, the physically unclonable function (PUF) mod-
ule generates a 128-bit hardware identifier (HID), which is
combined with the SHA hash to authorise the software on
this hardware. We use a configurable RO-PUF function with
128 instances of the configurable ring oscillator (RO), each
instance contained within a single logic block (CLB), based
on the design in [14]. This design allows for accurate repro-
duction of the hardware signature, since the routing within
each RO is completely constrained to the CLB and its as-
sociated switch box (interconnect). Once the SHA-1 hash
and HID are generated, the software hash is authenticated
against the hard-coded SAR register value, while the HID
and software hash are combined and hashed to determine
if the software is authorised to run on this specific hard-
ware by matching it against the hard-coded SHAR register
value. Once the software and hardware are authenticated
and authorised (as valid or invalid), the status register is
updated and a reconfiguration may be triggered depending
on its value. If authorised, the CSM triggers the Config.
Controller to read the (cached) bitstream data correspond-
ing to the FlexRay CC and enables the interfaces to the bus,
which are otherwise disabled to prevent even a forced recon-

DDR
SHA-1 SHAR SAR
Buffer
— I | Buffer |
Auth,(m,f,u:
;_‘_;
UID }—4

UiD

PUF

Count

L> Comp.

Control

Enable

Figure 3: The Hardware-Software Authentication logic

figuration from the PS to be futile. The architecture of the
authentication function, expanded out from the PRR block
is as shown in Fig. 3.

Once authenticated, corrupt software could still be forced
onto the PS at run-time (via JTAG for example); however,
such programming triggers the PS reset, which is also wired
out into the hardware logic. This run-time reset disables the
interface multiplexers (from CC to PL and CC to FlexRay
bus) which stay disabled until the hardware is power cycled,
forcing the system to boot from the NVM. This prevents in-
vasive attacks from employing non-persistent run-time ma-
nipulations on application code. Any persistent alteration
(requiring the code to be changed in the NVM) will be de-
tected as a violation by the hashing function, preventing the
system from authenticating the software and loading the CC.

Secure FlexRay Network Interface: The FlexRay CC
is the implementation of the FlexRay communication pro-
tocol, composed of the Protocol Engine (PE) and the Host
Interface (HI) modules. The PE implements the protocol
specifics like clock synchronisation and encoding/decoding,
while the HI implements generic address-data interface to
the application/host processor.

To integrate data security into the communication sys-
tem, we have integrated a timestamp module and a light
weight PRESENT cipher into the datapath of the encod-
ing/decoding blocks in an otherwise standard FlexRay CC.
By utilising custom data widths and extensive pipelining,
we have ensured that this does not introduce additional la-
tency to the data flow in the system, and is confined within
protocol boundaries, as discussed in [15]. Even though in-
troduction of timestamps increases the entropy of data be-
ing exchanged making attacks difficult, it does not prevent
a newly plugged-in (or compromised) unauthorised device
from accessing communication on the network.

To achieve this, we must prevent unauthorised devices
from integrating onto the network. The protocol headers
encompass information about the communication schedule
and the configuration of the network in plain text, which can
be observed by a unauthorised device to recover the protocol
parameters. Knowledge of these and the communication
schedule can be used to generate a valid configuration for
the unauthorised device, which could then integrate on to
the network and manipulate the messages.

To circumvent this, we extend the controller so that the
protocol headers are also obfuscated by the cipher logic. The
first byte of the protocol header containing the flag bits is
left untouched, but the following 4 bytes that comprises
the slot number, cycle number and payload length (along
with header CRC) are combined with the 4 byte timestamp

FECU 1D
Tz Buffer <—— €<~ EC'U Data
LSchedule

Encoding Cipher

Bit Tx Tz TS : e, J

Clk sync Inper
& Upper

Timestamp Layers

Bit Re = Lot Rz ID
Decoding Rz Data
Bl e Reject

Rz Buffer

Figure 4: Enhanced datapath at the cipher logic for incor-
porating header obfuscation.

(Tx_TS) to form the first 64-bit block. This is then en-
crypted with the pre-shared key, over 8 cycles (configurable,
up to 32), while the first 64-bits of ECU data is prefetched
into the buffer. To increase entropy, the data may be (op-
tionally) padded with the timestamp (2 or 4-bytes), sacri-
ficing bandwidth. This data is encrypted with a timestamp-
based-key which is a combination of the header timestamp
and the pre-shared key. This approach ensures that there
is large entropy even with identical data (and no timestamp
padding) with further increased entropy in the case of data
padded with timestamp. This is possible in time-triggered
networks since all nodes are synchronised. The data may
be encrypted with a larger number of cycles (up to 482 cy-
cles) without affecting the latency of the system, since this
can be hidden within the encoding/transmission delay of the
preceding 64-bits.

At the receiving end, the byte-decoded data is read di-
rectly into the PRESENT decoding buffer. The first byte
of the frame header is passed through untouched, allowing
the protocol defined startup and synchronisation logic to
work without changes. The remaining 4-bytes along with
the timestamp are decrypted with the same pre-shared key
to determine the actual protocol information (slot, cycle,
and payload size), which is used by nodes to integrate onto
the network. Since only authorised devices are preconfigured
with the pre-shared key, this scheme ensures that unautho-
rised devices cannot integrate on to the network, as they
cannot determine network parameters from observing the
bus.

The remaining received data is decrypted in a similar man-
ner, but by using the timestamp-based-key regenerated from
the decrypted timestamp (Rx_TS) and pre-shared key to re-
cover the original data. Since the encryption/decryption
latencies are deterministic, the timestamp validation sys-
tem can add this deterministic offset to time-validate the
received message and may discard the same if messages are
older than a configured threshold, protecting the ECU from
replay attacks. The altered datapath for the timestamp-
based header obfuscation and data encryption is shown in
Fig 4.

Run-time alteration of cipher properties: As men-
tioned, a pre-shared key and default cipher configuration is
loaded into the CC of the critical ECUs by the vendor to
ensure that only authorised parts are used. This key is used

to obfuscate the schedule and data during the network inte-
gration phase. To further enhance security, it is possible to
change the encryption scheme periodically at runtime. Once
integrated, the secure gateway can trigger a new cipher con-
figuration using an (encrypted) network management vector
(NMV) message, that is decoded by the CC. The NMV pro-
vides the new number of rounds for each segment (header/-
data) and the new pre-shared key (which can be generated
using standard algorithms). The nodes adopt this new con-
figuration at the start of the next cycle, ensuring synchro-
nised operation. Handling the alteration of cipher properties
within the CC abstracts these details from the application
and does not provide a path for software hacks to access this
information.

S. EXPERIMENT SETUP AND RESULTS

The proposed system is evaluated in two steps. First the
software tamper protection is evaluated on a Zedboard fea-
turing a Xilinx Zynq XC7Z020 to measure the boot time,
determinism of the hardware identifiers, overall latency and
resource overheads. Next, the run-time network access con-
trol, data encryption and enhanced entropy of frames are
evaluated on a Xilinx AC701 board by integrating multi-
ple ECUs with authentic software (authentication block is
removed due to area constraints).

Table 1 shows the comparison of resource overheads of the
proposed system, compared to a standard implementation
of the FlexRay NI (without any extensions) on the Zynq.
Incorporating the cipher and datapath extensions to achieve
network access control in both channels results in a 115%
overhead in flipflops (FFs) and 59% in Logic (LUTs) at the
NI alone. However, the overall implementation (NI including
PR support) still utilises under 33% of resources on the low
capacity XC7Z020 device with only a marginal increase in
power over the standard NI (38 mW increase). PR allows the
non-concurrent authorisation and NI blocks to be located
in the same physical region, reducing the overall resource
requirements.

To evaluate the hardware-software authentication, the im-
plementation was tested on multiple Zedboards and the Xil-
inx ZC702 development board featuring the same XC7Z020
device. It was observed that the HID generated by the RO-
PUF differed by 34 bits on average (16 bits minimum) be-
tween the different boards for the same configured challenge
value, whereas the generated HID had no appreciable vari-
ation on the same board for over a few thousand runs at
room temperature. Tampered software on the other hand
resulted in large variations in the hash value, with a single
line edit resulting in more than 80 bits difference. With the
boot image read directly from the NVM, the authentication
function took 118.3ms to authorise the software while the
reconfiguration operation took 62.5ms to load the secure
CC (once authenticated). Alternatively, the sys_init() rou-
tine can buffer the NVM contents (including CC bitstream)
in DDR memory, and overlap data movements allowing au-
thentication to be completed in 66.5 ms, and reconfiguration
in 4.4ms (to load the secure CC). However, this could be
prone to tampering with DDR contents (via software or oth-
erwise). The default scheme buffers the CC bitstream only,
which provides high reconfiguration speeds (4.4ms) with
reasonable authentication latency (118 ms) without compro-
mising security.

We evaluate the network security and data encryption

Table 1: Comparison of Resources on XC7Z020.

Function Submodule FFs LUTs BRAMs DSPs
PMM 225 550 0 0
CSS 1861 3508 2 1

standard CC ~ MIL(x2) 851 1393 2 0
CHI 1676 2060 10 1
Total 5491 8939 16 2
PMM 225 555 0 0
CSS 1861 3525 2 1

secure CC Cipher(x2) 2548 2379 4 0
MIL(x2) 1380 1635 3 0
CHI 1676 2086 10 1
Total 11618 14194 26 2
PUF/SHA 4 4 1

S/W Auth. U ./S 665 657 0
Static 3895 3619 1 0
Total 8560 10193 2 0

Overhead cc 6127 5255 10 0

(%) 115% 588% 625% 0%

scheme by integrating 4 ECUs (3 authorised and one at-
tacker, all based on MicroBlaze soft cores and a FlexRay
CC), each running tasks that trigger data exchange over the
network in every cycle, on a single FPGA device (XC7A200T
on the AC701 board). For this evaluation, we have assume
that the ECUs are running authentic software, since the sin-
gle chip does not offer sufficient resources to manage recon-
figuration for multiple ECUs. The FlexRay schedule uses
a 10 ms cycle at the full 10 Mbps bitrate, with the CCs
operating at 80 MHz and the MicroBlaze at 100 MHz.

Fig. 5 shows the normalised entropy (correlation) of the
transmitted frames (with 1ms timestamp accuracy), when
the authenticated secure CCs integrate and start commu-
nicating over the network. The timestamped header, when
encrypted over 5,8 and 16 rounds with the same pre-shared
key (cases 2 to 4) results in much higher entropy than the
standard header from the same device (single slot, all cy-
cles). The frame headers appear as noise to any unautho-
rised device, preventing it from integrating onto the net-
work, since the clock synchronisation parameters cannot be
extracted from a pair of frames (adjacent cycles) without
decrypting them, as observed in our experiment with the
attacker ECU. In fact, attacker is forced to quit the integra-
tion process after exceeding the number of failed attempts,
as required by the protocol. Fig. 5 also shows the improve-
ment over entropy of static data (case 5) achieved by times-
tamping alone (case 6), encrypting with time-varying key
without and with timestamped data (case 7 and 8 respec-
tively). The non-timestamped data when encrypted with
the time-varying key produces nearly the same impact as
encrypting the timestamped data, without consuming addi-
tional bandwidth required to incorporate the timestamp in
the data segment.

We observe that the header obfuscation causes a delay of
125 ns (for the default 8 round decryption of header) from
the arrival of header bytes to the decoding of protocol pa-
rameters like the slot number, cycle number, and payload
length, compared to the standard CC. However, these pa-

| T TT T
2 2 3 4 . -z
= 2| 7 8
£ 6

ol
8 ‘f’ 1 ey
SRS T
2 Y 5

X

Configurations

Figure 5: Entropy of obfuscation scheme 1: Normal Header,
2-4: Header via different rounds, 5: Static Data by Static
key, 6: Timestamped Static Data (unencrypted), 7 : Static
data with time-varying key 8: Timestamped Data with time-
varying key

rameters are only used by the upper layers of the protocol
(like medium access) and need only be validated after re-
ceiving a complete frame (including the frame CRC), unlike
the flag bytes. Hence this delay does not impact protocol
behaviour.

Finally, we triggered a run-time cipher adaptation by forc-
ing one of the ECUs to send a NVM message changing the
key and number of rounds. We observed that the NVM
was decoded by CCs on the fly and applied changes within
5 cycles of reception of the entire frame. The round-key
generation, consumed n cycles (for n rounds) over this re-
ception delay, with the double key buffer enabling the new
round keys to be generated without affecting the current en-
cryption scheme. This enabled instant migration to the new
cipher parameters at the end of current cycle, with all au-
thorised ECUs moving to the new parameters synchronously
at the cycle boundary.

6. CONCLUSION

Securing vehicular networks is of paramount importance
as vehicles increase in connectivity. While software and
hardware-based security mechanisms have been proposed,
they are restricted to either the computational or network
planes, and often incur additional latencies. We have pre-
sented an integrated approach to application authentication
and network security, that crosses the layers in automotive
networks. Malicious software is counteracted through an
authentication scheme that prevents network communica-
tion in the case of a mismatch. Attacker ECUs are pre-
vented from joining the network through a robust obfus-
cation scheme that hides network timing parameters from
unauthorised ECUs. We demonstrated this system using
the Xilinx Zynq with partial reconfiguration allowing shar-
ing of resources, and demonstrate that the scheme does not
impact communication latencies and hence the determin-
ism of the system. The same method can be extended to
other time-triggered protocols which might eventually su-
persede FlexRay, and we aim to further enhance the system
by integrating novel key-exchange mechanisms and policies
at higher layers for true dynamic security.

7. REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage.
Experimental Security Analysis of a Modern

Automobile. In IEEE Symp. on Security and Privacy
(SP), pages 447-462, May 2010.

Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage, Karl
Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive Experimental Analyses of
Automotive Attack Surfaces. In USENIX Security
Symposium, 2011.

Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves
Roudier, Alastair Ruddle, and Benjamin Weyl.
Security requirements for automotive on-board
networks. In Proc. Int. Conf. on Intelligent Transport
System Telecommunications (ITST), 2009.

Dennis K Nilsson, Phu H Phung, and Ulf E Larson.
Vehicle ECU classification based on safety-security
characteristics. In Proc. Conf. on Road Transport
Information and Control, 2008.

Ivan Studnia, Vincent Nicomette, Eric Alata, Yves
Deswarte, Mohamed Kaaniche, and Youssef Laarouchi.
Survey on security threats and protection mechanisms
in embedded automotive networks. In Proc. Conf. on
Dependable Systems and Networks Workshop
(DSN-W), 2013.

Hendrik Schweppe, Benjamin Weyl, Yves Roudier,
Muhammad Sabir Idrees, Timo Gendrullis, Marko
Wolf, Gabriel Serme, Santana Anderson De Oliveira,
Herve Grall, Mario Sudholt, et al. Securing car2X
applications with effective hardware software codesign
for vehicular on-board networks. VDI Automotive
Security, 27, 2011.

Gabriel Pedroza, Muhammad Sabir Idrees, Ludovic
Apvrille, and Yves Roudier. A Formal Methodology
Applied to Secure Over-The-Air Automotive
Applications. In Proc. Vehicular Technology
Conference (VTC Fall), pages 1-5. IEEE, 2011.
Andre Groll and Christoph Ruland. Secure and
authentic communication on existing in-vehicle
networks. In IEEFE Intelligent Vehicles Symp., 2009.
Tim Leinmiiller, Levente Buttyan, Jean-Pierre
Hubaux, Frank Kargl, Rainer Kroh, Panos
Papadimitratos, Maxim Raya, and Elmar Schoch.
Sevecom-secure vehicle communication. In Proc. of
IST Mobile Summit, volume 2006, 2006.

Marko Wolf and Timo Gendrullis. Design,
implementation, and evaluation of a vehicular hardware
security module. In Proc. Information Security and
Cryptology (ICISC), pages 302-318. Springer, 2012.

C. Schmutzler, A. Lakhtel, M. Simons, and J. Becker.
Increasing energy efficiency of automotive
E/E-architectures with Intelligent Communication
Controllers for FlexRay. In Proc. International
Symposium on System on Chip (SoC), 2011.

S. Shreejith and S.A. Fahmy. Extensible FlexRay
Communication Controller for FPGA-Based
Automotive Systems. IEEE Transactions on Vehicular
Technology, 64(2):453-465, 2015.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,

A. Poschmann, M. J. B. Robshaw, Y. Seurin, and

C. Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In Proc. Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2007.

Xin Xin, J Kaps, and Kris Gaj. A configurable
ring-oscillator-based PUF for Xilinx FPGAs. In Proc.
Euromicro Conf. on Digital System Design (DSD),
pages 651-657. IEEE, 2011.

S. Shreejith and S .A. Fahmy. Zero Latency Encryption
with FPGAs for Secure Time-Triggered Automotive
Networks. In Proc. Int. Conf. on Field Programmable
Technology (FPT), pages 256-259, 2014.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150415144019
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 25.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 25.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

