
Accelerated Artificial Neural Networks on FPGA
for Fault Detection in Automotive Systems

Shanker Shreejith, Bezborah Anshuman
School of Computer Engineering

Nanyang Technological University, Singapore
Email: {shreejit1,anshuman001}@ntu.edu.sg

Suhaib A. Fahmy
School of Engineering

University of Warwick, Coventry, UK
Email: s.fahmy@warwick.ac.uk

Abstract—Modern vehicles are complex distributed systems
with critical real-time electronic controls that have progres-
sively replaced their mechanical/hydraulic counterparts, for per-
formance and cost benefits. The harsh and varying vehicu-
lar environment can induce multiple errors in the computa-
tional/communication path, with temporary or permanent effects,
thus demanding the use of fault-tolerant schemes. Constraints in
location, weight, and cost prevent the use of physical redun-
dancy for critical systems in many cases, such as within an
internal combustion engine. Alternatively, algorithmic techniques
like artificial neural networks (ANNs) can be used to detect
errors and apply corrective measures in computation. Though
adaptability of ANNs presents advantages for fault-detection
and fault-tolerance measures for critical sensors, implementation
on automotive grade processors may not serve required hard
deadlines and accuracy simultaneously. In this work, we present
an ANN-based fault-tolerance system based on hybrid FPGAs
and evaluate it using a diesel engine case study. We show that
the hybrid platform outperforms an optimised software imple-
mentation on an automotive grade ARM Cortex M4 processor in
terms of latency and power consumption, also providing better
consolidation.

I. INTRODUCTION

Vehicles today contain highly complex distributed comput-
ing systems, especially in luxury cars. Many critical and non-
critical functions are implemented in software on a network of
varied hardware components. A high-level function is typically
distributed over multiple electronic control units (ECUs) inter-
connected by shared bus networks, allowing information from
multiple sensors to be used to decide on actions performed
on several actuators. This distributed approach and the harsh
automotive environment present multiple ways for errors to
be introduced into the system, ranging from temporary dis-
turbances because of electromagnetic interference (EMI), to
blown sensors, broken communication channels, or erroneous
computational units. As critical mechanical functions are pro-
gressively being replaced by electronic counterparts, tolerating
faults in computational paths and/or sensors/actuators has
become increasingly important, making fault diagnosis and
fault-tolerance mandatory in many safety-critical ECUs and
functions. As the number of sensors, actuators, and ECUs in
vehicles increases, more robust fault detection and tolerance
mechanisms are required to maintain correct function of ECU
subsystems under different circumstances.

Typical fault-tolerant behaviour is achieved using redun-
dancy in the spatial or temporal domains. Modern network-
ing systems like FlexRay incorporate completely isolated
redundant communication pathways [1], while critical systems
employ architectural enhancements (redundant cores, sensors,
or task migration schemes), as well as multiple task execution
cycles (with voting) for tolerating transient or permanent

Input1

Input2

...

Input(n-1)

Input(n)

w1

w2

...

w(n-1)

wn

Σ f(x) Output

Linear
Combiner

Activation
Function

Fig. 1: Generalised architecture of an n-input neuron.

faults [2]. Physical location constraints can preclude spatial
(hardware) redundancy from being applied in many cases, such
as in the air-flow path of combustion engines, due to both
high cost (high temperature/pressure tolerance requirements)
and reduced efficiency (reduction in air-flow rate).

Instead, it is possible to model the relationship between
physical variables to perform sensor fault detection compu-
tationally. Artificial Neural Networks (ANNs) are a promising
approach in this regard, since they can be used to mimic
these physical relations (by training). Such adaptability enables
ANNs to be employed for a wide range of applications like
classification [3], [4], adaptive communication [5] and in-
vehicle fault detection [6], [7], among many others. These
applications often employ multiple layers of pre-trained neu-
rons referred to as multi-layer perceptrons (MLPs). The funda-
mental computational element of these networks is the neuron
whose general structure, shown in Fig. 1, computes a weighted
sum of its inputs. Non-linear functions like sigmoid (a function
with an “S” curve) are commonly employed as the activation
function, since they help to map non-trivial relationships using
fewer nodes. The required relationship between input-output
variables is established by training these layers of neurons
using standard algorithms.

While ANNs are suitable for automotive fault-detection, im-
plementing them on the general purpose processing platforms
commonly used in ECUs is problematic due to the limited
computational capacity not offering the throughput required
for online fault detection. Furthermore, implementing ANNs
on ECUs keeps the processor busy, meaning its other tasks suf-
fer, further deteriorating the system performance. An FPGA-
based implementation exploiting the inherent parallelism in
ANNs would allow a more meaningful balance of computa-
tional performance and power consumption, while also leaving



ECU processors free to work on their existing tasks. Within
an automotive context, building a standalone fault-tolerance
system would result in a more complex network, higher
bandwidth and power requirements, and increased weight.

In this paper, we present an approach based on new hybrid
FPGA platforms like the Xilinx Zynq, that closely couple
a high performance FPGA fabric with a capable processing
system. The combined hardware-software approach allows
high hardware performance to be interfaced with software-
based processor control. We explore the possibility of such
platforms using a case-study on fault-diagnosis of an exhaust
gas regulation (EGR) pressure sensor at the intake manifold
of a diesel engine, originally modelled in MATLAB. Our
experiments show that the hybrid platform offers advantages in
performance and scalability over a typical software approach
on a capable processing system.

II. RELATED WORK

In the literature, artificial neural networks (ANNs) have
been explored for classification, pattern detection, machine
learning and fault-detection. Deep learning forms of ANN
like Convolutional Neural Networks (CNN) and Recurrant
Neural Networks (RNN) are widely acknowledged for their
compute performance and energy efficiency in classification
and machine learning tasks on large datasets (typically in
datacenters) [3], [4], [8]. Many ANN applications that interact
with physical systems require the accuracy and dynamic range
offered by floating point representations, resulting in increased
complexity at each neuron. FPGAs represent an ideal platform
for accelerating ANN-based systems because they enable
large scale parallelism while also supporting high throughput
floating point computations [3], [4], [9].

The flexibility of regular feed-forward ANNs allows them
to be employed in many distinctive applications and domains.
In [5], the authors present an FPGA implementation of the
reactive routing scheme for improving the performance of
mobile ad-hoc networks using a 2-4-1 MLP ANN. Floating
point representation was explored for an adaptive activation
function and for the entire compute structure in [10], [11],
providing better accuracy for the system. Among others, [7],
[12] discuss the use of ANNs for hard-real-time embedded
applications like fault-detection, and real-time tracking appli-
cations in automotive and defence systems.

The use of ANNs for fault detection in the automotive
domain was first proposed in [6]. The authors describe an
offline software-based ANN for detecting sensor faults in
engines. In [13], the authors present an evaluation of the
Instrument Fault-Detection, Isolation, and Accommodation
(IFDIA) scheme and present a proof-of-concept scheme on a
DSP platform. Though their results show improved sensitivity
to faults, software execution presents a bottleneck for larger
ANN networks, since parallelism is not exploited.

Within the automotive domain, FPGAs have been proposed
to accelerate computationally intensive real time vision-based
driver assistance systems [14], [15]. AUTOSAR compliant
ECU architectures on FPGAs have also been proposed [16],
which can be extended to ECU-on-chip designs that tightly
integrate network interfaces and computational cores. Dynamic
reconfigurability has also been explored for enabling multi-
mode operation for ECU consolidation [17]. Fault-tolerance
at architectural level using run-time reconfigurability has also

Pim

Intake
Manifold

Pom

Exhaust
Manifold

Cylinders

Intercooler

EGR cooler

Wt

Uvgt

Wei Weo

Uδ

Wc

Uegr

EGR valve

Turbine

Compressor

Wegr

Fig. 2: Air-flow path within a diesel engine.

been explored [18], [19]. FPGAs have also become more
affordable, reducing a barrier to widespread adoption. Hence,
the idea of using FPGAs in vehicles is becoming accepted [20].
To our knowledge, no FPGA-based fault-tolerance schemes
using ANNs have been proposed.

In our work, we consider an ECU that uses a hybrid FPGA,
tightly integrating a capable processor with a reconfigurable
fabric, allowing evaluation of large and complex ANNs for
fault-detection and accommodation. Beyond the network level
optimisations described in the literature for ANN implementa-
tions, we optimise the individual neuron structure with a folded
sharing approach and explore architectural optimisations like
pipelining and scheduling within each neuron and at the
network level. The approach is implemented on a Xilinx Zynq
platform to evaluate online engine fault detection (derived
from [6]), showing that the proposed scheme is able to accel-
erate the prediction and fault-tolerant behaviour of the system,
improving the reliability of the ECUs. Furthermore, we also
explore the scalability and reconfigurability of the platform to
accommodate failures by altering the ANN system.

III. SYSTEM ARCHITECTURE

A. Fault Diagnosis of a Diesel Engine
Fig. 2 is a simplified representation of the air-flow path

within a diesel engine [21]. Exhaust gas recirculation (EGR)
is a technique commonly employed in modern internal com-
bustion engines, that aims to reduce the nitrogen oxide (NO2
and NO) emissions (NOx emissions) by recirculating a portion
of the exhaust to the engine, via the EGR value and the
EGR cooler. This flow is controlled by a set of sensors and
valves: the Pressure Sensor that measures the pressure at the
input manifold (air intake) and the EGR Valve that regulates
the amount of recirculated air. A failure in either of these
components can result in poor engine performance in the short
term and partial or complete engine failure in the long term.

To avoid such expensive failures, the Engine ECU com-
monly compares the measured pressure value, Pim , with
the expected pressure value, Pim(E), that is computed using
its non-linear relation to other measured sensor values, as
described in Eq. 1. Here, Uegr is the position of the EGR
valve, Neng represents the rotational speed of the engine
(rpm), and Wei represents the flow rate of the air, which are
all measured by sensors. The computation involves physical
quantities with differently bound values (that can also vary
between engines) requiring floating point representation, thus



Float
Mult

Float
Add

CMS

Const

Const

Out1

Inp1

Inp2
Const

ValidValid
Ack

Fig. 3: Core structure of 4/6 input neuron.

making it computationally expensive on many automotive
microprocessors that do not feature a dedicated floating point
unit. An offline software-based ANN for predicting Pim(E)

was proposed in [6] to reduce the computational requirements,
but considerable latency was incurred by the prediction loop,
and this increased super-linearly with the precision demanded
by modern engine systems.

dPim

dt
= F (Uegr , Neng ,Wei) (1)

For ANN-based prediction, Uegr , Neng , and Wei , form the
inputs to the MLP which are evaluated by the network to
generate the predicted value Pim(E). The number of layers of
the MLP and the number of neurons in each layer should
be appropriately selected, and trained, to achieve accurate
prediction for all possible conditions.

Each neuron in this arrangement requires 4 multiplication
(inputs × weights) and 3 addition (accumulation) operations
to generate the intermediate result and a further 1 multi-
plication and 2 addition operations for the piecewise linear
approximated (PLAN) sigmoid activation function. To exploit
parallelism, each neuron in a layer must be activated simul-
taneously, and compute its results in a predictable number of
cycles. Hence for a simple 4-neuron layer, a standard RTL
description would result in 20 multipliers and 20 adders being
inferred by the synthesis tools for integer representation. To
maintain required precision, the network should incorporate
at least 2 computational layers with an input layer built on
4-input neurons (the fourth input being the current pressure
value). Furthermore, the use of floating point representation
(to maintain precision as well as adaptability) increases the
number of integer multipliers by 4 times, further limiting the
number of neurons that can fit on a small device.

B. Optimisation of Generalised Neuron Architecture

Though direct implementation of MLPs using DSP blocks is
possible, these are often inefficient as this would not maximise
DSP block throughput by way of careful pipeline optimisation.
Also, direct mapping of a moderately sized 6 6 1 network
using floating point values would result in 79× 4 DSP blocks
(((4×6+6)+(6×6+6)+(6×1+1)) × 4). The need for floating
point adders further limits the number of neurons and reduces
the efficiency of direct mapping. The architecture of the
neuron must thus be optimised for floating point to allow high
performance and scalability. We define a template for neurons
that enables reuse of the computationally expensive floating
point operators while achieving high operating frequency and
constant latency. Multiple templates are necessitated by the
non-uniform structure that results from multilayer perceptrons,
resulting in a varied number of input/output possibilities at
each layer.

The core elements of our neuron architecture are shown in
Fig. 3. The structure is composed of a pipelined floating point
adder and multiplier unit, derived from the Xilinx floating
point IP cores. The floating point adder is built completely
out of logic (LUTs and Flip Flops), while the more complex
multiplier is built out of 4 DSP blocks and supporting logic.
The same multiplier and adder units are reused to compute
the PLAN sigmoid activation function by the scheduler, reduc-
ing resources further. The scheduling of inputs/operations to
these blocks and their monitoring/control are handled by the
Controlling & Monitoring Subsystem (CMS) module, which
exploits the 4-stage pipeline within the floating point units. The
CMS is a finite state machine that derives operation latencies
from the top-level parameters and produces control signals
for the multiplexer and demultiplexer blocks to schedule the
execution sequence. The CMS also generates the ack and valid
signals for the neurons in the preceding and successive layers,
based on the determined schedule. This structure completes
the entire computation from weighted sum to activation in 38
clock cycles.

The operations of the individual stages are shown in the
timing diagram in Fig. 4. The multiply operations are sched-
uled as and when the inputs are received, along with their
weight values, with one multiplication in each layer at each
timestep. The pipelined multiplier can receive operands every
cycle and produces the output after a fixed latency of 4 cycles.
These are passed in sequence to the adder for accumulation,
which is also a pipelined structure with a latency of 4 cycles.
Accumulation is completed in the 21st cycle and is followed
by the sigmoid computation, which is scheduled on the same
hardware blocks by the CMS.

The structure instantiates a single floating point adder and
a single multiplier unit for 4/6 input neuron structures. In
the case of larger input combinations (8/12/16 or more),
multiple floating point units are used. In the case of 8/12 input
neurons, two independent floating point adders and multipliers
are instantiated, while for 16 input neurons, four parallel
units are instantiated. Here, the CMS module adjusts the
scheduling of inputs and operations to ensure that the parallel
logic is effectively utilised. This allows us to achieve higher
performance and almost the same latency in computation, at
the expense of slightly increased resource usage. The neuron
structure is parameterised so that the CMS infers the proper
schedule and instantiates the combination of floating point
blocks, based on the design time parameter configuration.
Constraining the resource requirements at neuron-level allows
parallel neurons to co-exist even on smaller FPGAs, leading
to higher parallelism.

The network is built up by instantiating different layers that
incorporate the parameterised neuron, each layer being self-
managed. The handshaking signals integrated into the neuron
interface ensure that very little control is required between the
different layers for the computation to flow through. Moreover,
since the different layers operate in isolation, it is also possible
to execute multiple computations in a layer-wide pipeline, with
little external logic to manage the data flow in case of non-
symmetric layer structures. Since we have optimised the low-
level neuron design around the structure of the DSP block,
it attains high throughput, and resource sharing ensures the
compute units are kept busy.



clock

input/Wts in1 in2 in3 in4 in5 in6 ado5

multouta mu1 mu2 mu3 mu4 mu5 mu6 mu7

adda mu1 mu3 mu5 ado1 ado3 Sigmoid Step Invert

addb mu2 mu4 mu6 ado2 ado4 mu7 ado6

addout ado1 ado2 ado3 ado4 ado5 ado6 ado7

Output Nout=ado7

Valid

Fig. 4: Timing diagram for complete computation of a 6-input neuron.

Zynq PL

Mode 1
or

Mode 2

PRR

ZyCAP

UEGR

Sensor

Neng

Sensor

Wei

Sensor

Pim

Sensor

Weights

Err

P
ro

ce
ss

in
g

N
et

w
or

k
In

te
rf

ac
e

Zynq PS ARM

Obs

Act

Interconnect

DRAM

Flash

Pim

Pim

Pim(E) Pim(C)

Pim(C)-latched

GP PortGP Port HP Port

Interrupt

Reconfigure

Actuators

Actuators

Fig. 5: Proposed hybrid fault-tolerant ECU model on Zynq.

IV. HYBRID ECU APPROACH

While the ANN could be implemented as standalone fault
detection logic on a low-power FPGA like the Spartan-6,
this entails overheads in communicating fault information to
the engine management system (EMS) and further delay in
activation of fault tolerance measures. An integrated approach
presents a more interesting solution, where the fault detection
scheme forms an integral part of the EMS, improving overall
reliability and determinism. New hybrid platforms like the
Xilinx Zynq allows such tightly coupled integration between
programmable logic (PL) and a highly capable ARM pro-
cessing system (PS). The customisable fabric offers a highly
parallel data acquisition interface with high scalability, and
high computational performance even for a large predictive
network. Moreover, dynamic reconfigurability under software
control can be used to alter the functionality of the ANN from
a fault-detection mode to a more precise prediction mode when
needed.

A high level view of the proposed hybrid ECU system
on Xilinx Zynq is shown in Fig. 5. The external sensors
are integrated into the system via multiple parallel interface
modules, via protocols such as SPI or I2C. The acquired
data is fed to the neural network enclosed in the partially
reconfigurable region (PRR), which predicts the possible value
of Pim(E) based on the other sensor inputs. This prediction is
performed by a lightweight network (mode 1) that can predict
the value with reasonable accuracy. The predicted value is
compared to the acquired pressure value Pim , and an error
is triggered in case of a deviation beyond a predetermined
threshold. If there is no error, the acquired sensor values are
passed to the software system via the AXI interface (GP port).

The software on the ECU executes the control loop (marked
as states Obs and Act), which monitors the sensor values
and performs computations as per the algorithm to trigger
changes in the system. Alternatively, this computation could
also be offloaded into the hardware using the Processing block,
which can implement the same algorithm in hardware, whose
actuation outputs can then be controlled by the software.
The hybrid ECU is then wired up into the vehicular network
by integrating a custom network controller [22], to form a
complete ECU-on-chip system .

If persistent errors are observed, the neural network is
switched to a more precise mode (complex network designated
mode 2) to predict the pressure values with higher accuracy
(fault-tolerance mode) based on the other sensors. This is
achieved by reconfiguring the PRR alone (partial reconfigura-
tion) to include different weights and a different configuration
of the network (more active elements or higher number of
layers). Once reconfigured, the network output is used directly
by the processing logic for further computations, until the fault
is rectified. The software/hardware function can be configured
to monitor the Pim sensor values and restore normal operation,
if the system recovers from the error. In this case, the software
reconfigures the logic back into the fault-detection mode, with
the lightweight network.

We use the open source ZyCAP configuration management
system, integrated as a peripheral to the processing system,
with its own software libraries/drivers [23]. It handles low level
reconfiguration commands, bitstream memory management
and abstracts the details from our application design. ZyCAP
also provide faster, non-blocking reconfiguration.

V. RESULTS

First, we evaluated the performance of the possible ANN
configurations using the low power Xilinx Spartan-6 series,
which are more suited for a standalone vehicular implementa-
tion. The ANN models were evaluated using both simulation
and implementation in hardware (for the configurations that
could fit on a XC6SLX45T device). All configurations of
the network were trained offline with data generated from a
MATLAB model of the diesel engine [21] using the back
propagation (BP) algorithm, for a target precision of 0.01.
The trained weights were loaded into a Block RAM, while
the test vectors, also generated from the MATLAB model,
were provided as the inputs. We used a set of 151 test vectors
that span the operating range of the diesel engine model,
representing a range of values for the different inputs.

Fig. 6 plots RMS prediction error of the ANN models
(trained with the same termination conditions: 1000 runs or
0.01 precision) compared to the MATLAB model against the
effective area required for each implementation. The effective



20,000 40,000 60,000 80,000 1 · 105 1.2 · 105
0.01

0.02

0.03

0.04

6 1
8 1

12 1 16 1

6 6 1

6 8 1

6 12 1

8 6 1
8 8 1

8 12 1

8 16 1

12 6 1 12 8 1

12 12 1

Effective area

R
M

S
E

rr
or

Fig. 6: RMS error of prediction v/s Effective area, for different
ANN configurations.

TABLE I: Resource utilisation and prediction latencies of
different ANN networks on the largest Spartan-6 device.

Structure FFs LUTs BRAMs DSPs Latency
L1 (L2 )Out (cycles)

6 1 4037 5939 0 28 68
8 1 5539 8195 0 40 68
12 1 7959 11792 0 56 72
16 1 10962 16412 0 80 72
6 6 1 7956 11644 0 52 105
6 8 1 9650 14239 0 64 105
6 12 1 12454 18342 0 80 109
8 6 1 11401 17175 0 84 105
8 8 1 13868 20939 0 104 105
8 12 1 18225 27519 0 136 109
8 16 1 23164 35062 0 176 109
12 6 1 14780 22221 0 100 109
12 8 1 17632 26514 0 120 109
12 12 1 22757 34303 0 152 113

area is computed as DSPs× 512 + LUTs, which represents
the combined area utilisation on the largest Spartan-6 device
(XCSLX150). There is a baseline offset in the predicted
values, which is due to rounding and approximation schemes
in the floating point multiplier/adder units and the PLAN
approximated sigmoid implementation.

Further, it can be seen that the single layer 8 neuron
network (8 1) and the multi-layer 6-12 network (6 12 1)
are Pareto-optimal points offering minimal error and area
consumption. Hence, these two implementations were chosen
for the fault-tolerant hybrid ECU model that we evaluate later.
The hardware requirements of the different models are detailed
in Table I, along with the prediction latencies, suggesting that
the single layer 8-neuron network can function as a quick
and efficient fault-detection system, while the more extensive
multilayer network can be used as a sensor replacement,
forming a fault-tolerant system.

To highlight the performance advantage of implementing
the ANN in hardware (versus software), we executed an
optimised software version of the two networks as a bare-
metal application on an automotive grade STM32 platform
(STM32F407FZ) which uses an ARM Cortex M4 processor.
With a clock rate of 168 MHz and with the support of a
dedicated floating point unit, the software models executed
in 13.47 us and 43.26 us respectively. The same models took

TABLE II: Hybrid ECU resource utilisation on the Zynq 7020.

Mode FFs LUTs BRAMs DSPs PR bit size

mode 1 6623 7878 6 14 1506784 bytes
mode 2 15069 20498 6 40 1597303 bytes

Test Cases

Mode 1
Mode 2

0.01

0.02

0.03

Modes

A
bs

ol
ut

e
E

rr
or

Fig. 7: Prediction accuracy of the two modes in the hybrid
ECU.

1.13 us and 1.82 us to compute in hardware, respectively,
at 60 MHz clock frequency, providing a 10× and 24× im-
provement respectively, which can be further enhanced when
clocked at higher speeds (120 MHz or higher). For our case
study, the latency of both software and hardware models
are within acceptable performance limits; however, the scal-
ability of software execution for more complex ANNs is
poor, compared to the nearly constant and predictable latency
of the proposed hardware. Software execution would also
be hindered by other tasks executed on the processor (or
interrupts), which may deteriorate the performance further.

For the proposed hybrid ECU, we evaluate the performance
of the deterministic mode-switch time by building the two
selected ANN architectures on the Zynq ZC7020, on the
Xilinx ZC702 development board. The resource utilisation and
compressed partial bitstream size of the two ANN modes are
shown in Table II. These bitstreams are loaded onto the SD
card as the different modes of the adaptive system. The system
normally instantiates mode 1, which uses the single layer 8-
neuron network to keep track of the precision of the Pim

sensor. When the error deviates beyond a configurable range
for consecutive cycles, the system switches to fault-tolerant
mode 2 and instantiates the more precise multilayer network,
that acts as a replacement for the Pim sensor. The mode switch
can also be triggered from software for testing.

We measure the active power while executing both modes
on the ZC702 board using the Texas Instruments power
measurement adaptor that connects to the PMBus. In the fault-
free mode 1 configuration, the system consumes 85 mW of
power on average (110 mW peak), with the computation being
triggered every 10 ms, as in the case of a normal engine
management system, with a 120 MHz clock. In mode 2, with
the same trigger rate, the system consumes higher average
power at 135 mW, with peak consumption of 160 mW, at
120 MHz clock. The software execution on the STM-32 device
consumed 220 mW for evaluating the mode 1 ANN alone.
The complete Zynq SoC hardware consumes 420 mW, largely
due to its dual-core processing system that consumed 300 mW
(average) while being mostly idle.

Fig. 7 shows the deviation of the predicted value in the
two modes, across the range of test vectors, compared to the
actual sensor values for each test vector. In both cases, we
directly compute the predicted value Pim(E) based on other



sensor inputs (UEGR, NENG and Wei ) and the latched Pim(E)

value, and compare it to the actual sensor value (Pim in the
current cycle). In mode 1, the latched Pim(E) corresponds to
the sensor value acquired in an earlier cycle modelling the
fault-detection case, while in mode 2, the latched Pim(E) is
the predicted output from the previous cycle, replicating a
fault-tolerant mode that is independent of the acquired sensor
input (Pim ). It can be observed that mode 2 results in a
tighter prediction, with significantly reduced deviation while
the fault detecting mode 1 results in a larger deviation in
the predicted values and also a larger mean error. The plot
also shows the ability of mode 2 to closely predict the sensor
value without depending on the corresponding sensor channel
for the entire set of inputs. This shows that mode 2 can
effectively replace the faulty sensor by closely estimating the
actual pressure value without adding considerable processing
latency, at fractionally higher power, while mode 1 prediction
can be used to determine the deviation in actual sensor values
with an accuracy of 0.05 (× scaling factor).

Finally, to trigger the mode switch, we introduced error
into the test vectors (flipped sign bit in Pim input to the Err
module) to trigger the adaptation to fault-tolerant mode. Using
Xilinx provided PR management, a software switch results in a
mode switch time of 145.2 ms to load the fault-tolerant mode,
from the detection of error, with an configuration throughput
of 10 MB/s. Using the prefetching scheme offered by ZyCAP,
we were able to reduce the mode switching time to 3.99 ms.

VI. CONCLUSION

Artificial Neural Networks provide a suitable mechanism
for fault-detection and fault-tolerance in critical domains like
automotive systems. However, ANNs are inherently compu-
tationally intensive and the precision requirements in harsh
automotive environments mean large networks are required,
making software implementations impractical. In this paper,
we presented a hybrid ECU approach, based on the Xilinx
Zynq platform, that integrates an ANN-based prediction sys-
tem which doubles up as a replacement sensor in the case of
persistent faults. The ANN network is completely contained
within a partially reconfigurable region (PRR), integrated with
parallel sensor acquisition interfaces, a fault detection system,
data processing engine, and a network interface. PR allows
seamless migration from the fault-detection ANN network
(under normal operation) to the fault-tolerant mode with a
larger, more complex and accurate network that effectively
replaces the faulty sensor, by reusing hardware resources.
The proposed parallel architecture enables the ANN to be
evaluated in a predictable short latency of under 1 us, even for
the larger prediction network. Moreover, the reconfiguration
operation is managed seamlessly under software control, with
fast reconfiguration and complete changeover in under 4 ms.
We evaluated the approach using a case study on a diesel
engine model, where the intake manifold pressure sensor is
monitored for faults and replaced by the prediction network
in case of error.

In future, we plan to extend the scheme to integrate on-line
training (using the spare-ARM core), which would enable the
network to adapt to any sensor faults in real-time. We would
also like to explore extending the ANN-based hybrid ECU
model to other automotive hard-real-time applications like
battery management in electric vehicles, and more complex
x-by-wire systems.

REFERENCES

[1] FlexRay Communications System, Protocol Specification Version 2.1
Revision A, FlexRay Consortium Std., December 2005. [Online].
Available: http://www.flexray.com

[2] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis
and optimization of fault-tolerant task scheduling on multiprocessor
embedded systems,” in Proc. Intl. Conf. on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). ACM, 2011, pp. 247–256.

[3] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, “Accelerating Deep Convolutional Neural Networks Using
Specialized Hardware,” Microsoft Research, Tech. Rep., Feb. 2015.

[4] S. Li, C. Wu, H. H. Li, B. Li, Y. Wang, and Q. Qiu, “FPGA Acceleration
of Recurrent Neural Network based Language Model,” in Proc. Intl.
Symp. on Field-Programmable Custom Computing Machines (FCCM),
2015, pp. 111–118.

[5] S. Shah and D. Vishwakarma, “FPGA implementation of ANN for
reactive routing protocols in MANET,” in Proc. Intl. Conf. on Com-
munication, Networks and Satellite (ComNetSat), July 2012, pp. 11–14.

[6] D. Dong, J. Hopfield, and K. P. Unnikrishnan, “Neural networks for
engine fault diagnostics,” in Proc. Workshop on Neural Networks for
Signal Processing, Sep 1997, pp. 636–644.

[7] R. Ahmed, M. El Sayed, S. Gadsden, and S. Habibi, “Fault detection of
an engine using a neural network trained by the smooth variable structure
filter,” in Proc. Intl. Conf. on Control Applications (CCA), Sept 2011,
pp. 1190–1196.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proc. Advances in neural
information processing systems, 2012, pp. 1097–1105.

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proc. Intl. Symp. on Field-Programmable Gate Arrays
(FPGA), 2015, pp. 161–170.

[10] P. Ferreira, P. Ribeiro, A. Antunes, and F. M. Dias, “A high bit resolution
FPGA implementation of a FNN with a new algorithm for the activation
function,” Neurocomputing, vol. 71, no. 1, pp. 71–77, 2007.

[11] D. Sonowal and M. Bhuyan, “FPGA implementation of neural network
for linearization of thermistor characteristics,” in Proc. Intl. Conf. on
Devices, Circuits and Systems (ICDCS), March 2012, pp. 422–426.

[12] T.-C. Chu and H. Szu, “An artificial neural network for naval theater
ballistic missile defense program,” in Proc. Intl. Conf. on Neural
Networks, vol. 1, Jun 1997, pp. 53–55 vol.1.

[13] D. Capriglione, C. Liguori, C. Pianese, and A. Pietrosanto, “On-line
sensor fault detection, isolation, and accommodation in automotive
engines,” Transactions on Instrumentation and Measurement, vol. 52,
no. 4, pp. 1182–1189, 2003.

[14] N. Alt, C. Claus, and W. Stechele, “Hardware/software architecture
of an algorithm for vision-based real-time vehicle detection in dark
environments,” in Proc. Design, Automation and Test in Europe (DATE)
Conf., 2008.

[15] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards rapid dy-
namic partial reconfiguration in video-based driver assistance systems,”
in Proc. Intl. Symp. on Applied Reconfigurable Computing (ARC), 2010.

[16] F. Fons and M. Fons, “FPGA-based Automotive ECU Design Addresses
AUTOSAR and ISO 26262 Standards,” Xcell journal, vol. Issue 78, p.
20 to 31, 2012.

[17] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Reconfigurable
computing in next-generation automotive networks,” IEEE Embedded
Systems Letters, vol. 5, no. 1, pp. 12–15, 2013.

[18] N. Chujo, “Fail-safe ECU System Using Dynamic Reconfiguration of
FPGA,” R & D Review of Toyota CRDL, vol. 37, p. 54 to 60, 2002.

[19] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An approach
for redundancy in FlexRay networks using FPGA partial reconfigura-
tion,” in Proc. Design, Automation and Test in Europe (DATE) Conf. ,
2013, pp. 721–724.

[20] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. A. Fahmy, N. Chang,
S. Park, Y. Kim, P. Leteinturier, and H. Adlkofer, “Embedded systems
and software challenges in electric vehicles,” in Proc. Design, Automa-
tion and Test in Europe (DATE) Conf., 2012, pp. 424–429.

[21] J. Wahlström and L. Eriksson, “Modelling diesel engines with a variable-
geometry turbocharger and exhaust gas recirculation by optimization
of model parameters for capturing non-linear system dynamics,” Pro-
ceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, vol. 225, no. 7, pp. 960–986, 2011.

[22] S. Shreejith and S. A. Fahmy, “Extensible FlexRay communication
controller for FPGA-based automotive systems,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 2, pp. 453–465, 2015.

[23] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq,” IEEE Embedded Systems Letters,
vol. 6, no. 2, pp. 41–44, 2014.


