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Abstract—Networked embedded systems have seen tremendous
growth with many more complex critical and non-critical systems
exchanging information over networks of various types. At each
node, information is processed by the network stack before the
application sees the data. Large portions of the stack are in
software, resulting in significant and non-deterministic delays.
While hybrid compute platforms like the Xilinx Zynq can accel-
erate processing tasks through offloading to programmable logic,
the delays incurred due to connectivity can significantly impact
overall application latency. In this paper, we present a smart
network interface approach for the Xilinx Zynq platform based
on datapath extensions within the otherwise standard Ethernet
interface. We show that this approach improves computation
offload latency by 24–27% and throughput by 37% for a complex
computational kernel.

I. INTRODUCTION AND RELATED WORK

Cloud computing has gained widespread adoption in sce-

narios where data from distributed sources must be collected

and processed in order to extract value, such as in industrial

equipment monitoring, business analytics, or fraud detection.

It allows for more complex or faster computation than is

possible at the data sources, and added scalability. However

as the amount of data grows, fully centralised computation

can lead to significant latencies, and high bandwidth and

resource requirements. This is problematic for applications

with strict latency or power constraints. Hence, in networked

environments connecting a large number of sensors, actuators,

and computational resources, decentralisation is becoming

more important.

A key challenge when building such a distributed applica-

tion is communication latency. Traditional system architectures

abstract away the delay involved in moving data between the

application and physical layers. As such, in time-sensitive

applications, there has been an attempt to bring computation

closer to the network interface. Concepts such as Smart NIC

(network interface card) enable computation to be performed

very close the the physical medium in a network interface,

avoiding a round trip through the processor’s non-deterministic

network stack. These have found widespread adoption in ap-

plications such as high frequency trading, where large volumes

of data received must be reacted to in minimal time.

In this paper we explore an approach for building such

architectures on the Xilinx Zynq hybrid FPGA platform, en-

abling processing on the integrated Ethernet interface without

involving the host processor, thus offering a significant im-

provement in response time over a standard hardware-offload

approach. This offers benefits in applications that involve

processing large volumes of data within strict time constraints.

Reconfigurable System-on-Chip (SoC) platforms such as

Xilinx Zynq and Altera Arria FPGAs are increasingly being

deployed in scenarios ranging from small mobile compute

platforms (drones and quadcopters) through self-driving plat-

forms, to accelerating deep learning. These platforms combine

capable ARM cores with tightly coupled programmable logic

that can be interfaced through a series of high-throughput

interfaces, with an array of networking options built in such as

controller area network (CAN) and Gigabit Ethernet (GigE).

A common challenge with these platforms is that interconnect

performance is largely dependent on low level optimisation of

communication between the different parts of the SoC [1]. In

most cases, hardware accelerators are integrated as peripherals

to the central processor, that then manages all connectivity and

offloading to these accelerators. As a result, commodity boards

are designed such that external interfaces are connected to the

processor interconnect.

Optimisations to data movement in such platforms have

been explored including storing data in DRAM (neural net-

works/vision systems) [2], high speed reconfiguration enabled

by creating a separate path to the configuration controller [3],

and separate network interfaces like Ethernet wired directly

into the PL. The generality of these interfaces simplifies

system design, but also presents a latency challenge that can

have a severe adverse effect on the performance gains possible

with accelerators.

In [4] the authors use scatter-gather/DMA proxying on the

Zynq platform to redirect Ethernet traffic to a custom GigE

Vision Bridge implemented on the programmable logic (PL)

to perform low-latency image processing on an incoming video

stream. We explore proxying alongside the proposed method

in Section II.

FPGAs excel at packet filtering at line-rate, with work

demonstrated on deep packet inspection [5]. They are also

widely used in line-rate Ethernet switching [6], [7]. Cus-

tom network interface modules with dedicated switching ex-

tensions can enable low-latency and deterministic switching

performance for mixed criticality traffic even when operat-

ing near network capacity [8], while extensions to custom

datapaths in such switching systems can enable on-the fly

traffic analysis [9], or detect potential threats through intrusion
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detection [10].

For alternate network standards like FlexRay and CAN

(used primarily in automotive and industrial control applica-

tions), data-path extensions have been shown to enable im-

proved communication throughput [11], energy efficiency [12],

and expanded features [13], [14].

The approach we present in this paper generalises the

concept of smart network interfaces on commodity FPGA

SoC platforms, proposing a configurable datapath extensions

framework for the Xilinx Zynq platform to enable seamless

processing of data in a distributed application with minimal

latency compared to traditional approaches.

II. ARCHITECTURE

A. Traditional Setup

By design, the Ethernet interface on most commodity Xilinx

Zynq boards is attached to the processor system (PS), allowing

the ARM cores to run operating systems like Linux with

a full TCP/IP networking stack, while offloading complex

computations to the custom hardware on the programmable

logic (PL). The PS Ethernet is initialised during the system

initialisation phase, where the Ethernet driver allocates a

continuous range of n 64-bit memory locations (where n is

configurable) as the Receive Buffer Queue and a set of n
receive buffer locations (called Receive Buffers). Each Receive
Buffer Queue location (called a buffer descriptor) holds the

address of the corresponding Receive Buffer and its status.

Similarly, the Transmit Buffer Queue and Transmit Buffers are
also allocated by the driver during the initialisation phase. The

buffer queues and buffers are usually locations in the DRAM

memory space. Further, the driver configures the start address

of the receive/transmit buffer queues into the base address

register of the PS Ethernet controller.

When a packet is received at the Ethernet interface, it is

temporarily placed into its internal receive buffer until it is

received completely without errors. The controller then looks

up the next receive descriptor and initiates a DMA transfer

to the buffer location specified by the descriptor and clears

its empty status word to mark that a frame is available at the

buffer location. The software running on the ARM cores keep

track of the buffer status word either through polling or via

interrupt, and if a frame is available, the processor fetches the

frame and passes it to the software stack or application for

decoding. The flow works in the reverse direction when the

transmit operation is enabled – the processor initialises the

buffer location and clears the empty flag, the Ethernet DMA

monitors the flag and initialises a transmission by copying the

frame to its internal buffer and setting the empty flag. Fig. 1

shows the setup process. The disadvantage of this approach

is that the processor is involved in handling every packet that

enters or leaves the system.

B. Hardware Offload via Software

The processor can offload a task into hardware, requiring

the data to be moved into the PL, usually via DMA. However,

this can introduce non-deterministic latency if the processor is
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Fig. 1: Initialising the buffer descriptors in the system initial-

isation phase for the Zynq PS Ethernet.

occupied with higher-priority tasks when a packet is received.

Alternatively, the PS Ethernet block can forward received

packets directly into the PL through DMA proxying. To

achieve this, during system design, memory spaces are mapped

in the PL logic that replicate the buffer queue descriptors (as

registers) and buffer memory (BRAMs or FIFOs), mapped

as addressable locations via the GP port for the Ethernet

DMA controller. To redirect packets back to DRAM, a DMA

controller may be instantiated within the PL to copy the frame

into the DRAM memory via the high performance (HP) port.

On system startup, the driver initialises the PL buffer memory

addresses and base address of PL buffer queue into the buffer

queue and buffer queue base address register of the Ethernet

controller, causing the Ethernet DMA to write the incoming

frames into the PL buffer memory. Unpacking logic in the

PL checks the frame-type and forwards it to processing logic

or PS DRAM for software driven processing. However, the

processor is still involved in decision making (based on packet

headers), resulting in non-deterministic latencies.

C. Smart Network Interface

One approach to overcoming the latency due to software-

controlled offloading is to offload the entire protocol stack to

the hardware, similar to the approach used in high-frequency

trading systems. Here the optimised hardware stack can pro-

cess incoming packets and direct the corresponding frames to

application layer software or to processing logic in hardware.

However, building a generic hardeware network stack that

supports a range of applications and protocols makes the

stack complex, diminishing the benefits of offloading. An

alternative approach is to mimic a smart network interface

controller (Smart NIC), i.e., enable a level of computation in

the network layer through hardware blocks dedicated to this

task. These hardware blocks are added as extensions to the

regular datapath and can monitor, analyse, perform compute

and redirect packets to different resources, based on the

content of the frame header and/or data. The extensions would

thus allow regular frames to be handled similar to a traditional

setup (i.e., using the software stack), while configurable filters

and compute layers can enable a host of features including

intrusion detection, packet redirection, deep packet inspection,

or others with minimal impact on latency. The smart network

interface approach uses the same redirection technique as
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Fig. 2: High-level architecture of the data-path extension

approach that mimics an Ethernet SmartNIC on the Zynq PL.

Also shown are the various data/control paths between the

data-path extension, PS, and hardware accelerator blocks.

before but only requires initialisation from software. In regular

operation, it requires little to no interference from the software

application, and thus offers deterministic and reliable latencies.

A high-level overview of the architecture that incorporates

data-path extensions in the regular Ethernet packet flow is

shown in Fig. 2. The data-path extension is configurable

packet monitoring logic that can detect specific patterns in the

header/data segment of an Ethernet frame. A control-register

stack within the extension block holds a set of configurations

that are programmed by the PS. These register bits determine

the operation of the extension, specify the pattern to look for in

layer-2/layer-3 headers as well as the actions to be performed

in case of a match. The logic monitors packets as they arrive

through the Zynq’s GP port while the packet is buffered in

the RX Buffer. A matching pattern in the incoming frame

determines the path taken by the it: to be processed within the

PL, ignored without action, or forwarded to the PS for further

processing. In the latter case, the extension performs a write

into the DRAM logic, and interrupts the processor to take

further action, while the processed header information can be

read via the register interface. If a packet is to be processed

by accelerator(s) in hardware, the extension redirects it into

the corresponding path in the PL. We have also incorporated

a pathway to send Ethernet frames from the PL: here the

frame data can be copied from the PS DDR, packed into an

Ethernet layer-2/layer-3 frame and pushed out for transmission

via the PS Ethernet (set up from the PS by configuring the

transmit ring buffers to mapped locations on PL). This allows

the accelerator to process a series of frames to produce results

which can be packed into Ethernet frames and sent back out

onto the network.

Fig. 3 shows the detailed building blocks and the
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Fig. 3: The building blocks of the data-path extension logic

integrated with the acceleration logic in the PL.

data/control flow paths of the extension logic. As the bytes of

the incoming frame are written into the Rx Buffer, the packet

checker accumulates 4/8/16 words of the incoming stream

into a shift register and tries to match it with the patterns

configured in the control registers. The depth of the shift

register is a design time parameter (up to 64 Bytes) and can be

altered before building the design using the Xilinx tools. The

run-time depth is controlled through the configuration in the

control stack to match any combination of bytes, as required

by the application. The match can be on the frame header

segment (i.e., layer-2/layer-3 headers), application data (data-

layer headers) or a combination of these. If a combination

match is found, the decision logic determines the action to be

performed and maps that as the control logic for the packet

arbiter.

The packet arbiter relies on a shift-register like arrangement

for handling the control, which in turn is synchronised with the

Rx Buffer (FIFO block within Rx Buffer). When the Rx Buffer

starts to fill up with an incoming frame and a control packet

has been passed into the packet-arbiter shift-register, the arbiter

sets-up the data-path by configuring the path multiplexer

(assuming the previous request was completed). If the packet

is to be fed back to the PS, it sets up the DMA controller

with the address in DRAM and length of the packet (all of

which are part of the control packet passed to the packet

arbiter). The DMA controller then initiates a transfer in the

PS DRAM, while the arbiter waits for the completion signal

from the DMA controller to start processing a new request.

Alternatively, if the packet is to be passed onto the accelerator

logic, the path multiplexer is configured to enable that path and

the Rx FIFO is read out by the accelerator. The interface to

the accelerator is a simple AMBA eXtensible Interface stream

(AXI-S) interface, allowing HLS generated kernels or custom

logic to be integrated seamlessly into the system. If the frame

is to be ignored, the decision logic issues back to back reads to

the FIFO interface to clear the frame from the buffer memory.

The transmit end uses a similar arrangement using a Tx

arbiter and intermediate FIFOs. When data is ready to be

transmitted from either the PS (via DMA interface) or from

the accelerator logic, the Tx arbiter checks for free space in

the Tx Buffer and sets up the path if space is available. The

Tx Buffer logic reads the data into the Tx FIFOs, performs

the framing operation (based on information from the control
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registers) and sets the ready signal to enable transmission via

the PS Ethernet interface. The FIFOs within the Rx and Tx

Buffer blocks are double-buffered to allow overlap between

reception/transmission and processing/framing operations. The

architecture can be extended to support multiple accelerators,

and configuration matches by setting the high-level parameters

at design time.

III. EXPERIMENTS

To evaluate the proposed approach, we use a case study

of a LIDAR-based object detection system that forms part

of the autonomous driving capabilities and adaptive cruise

control system in a modern car [15], [16]. For our exper-

iment, we have designed the system to receive sensor data

frames over Ethernet and apply the Constant False Alarm

Rate (CFAR) detection technique to determine the position

and distance of objects. The design targets the Xilinx ZC702

board hosting a Xilinx Zynq XC7Z020 (and can be trivially

ported to a Zedboard). The sensor frames data into Ethernet

packets containing 512 samples of of data (16-bits), embedded

within a data-layer protocol that uses an 8-byte identifier. Two

such frames are used in one compute cycle of the CFAR

algorithm. The test evaluates the latency incurred by the data-

path when processing in the traditional fashion (frame received

and processed in PS), offload model (frame received in PS,

computation offloaded to PL) and the proposed smart network

interface approach.

The CFAR algorithm computes the Fast Fourier Transform

(FFT) of the incoming samples, followed by a detection chain

to determine the presence of an obstruction as well as the

distance towards it. On the PL, this is implemented using

Xilinx IP cores and fully pipelined custom logic allowing each

part of the computation to be completely overlapped. On the

PS, we use optimised C code for computing the FFT and the

intermediate results are stored in On-Chip Memory (OCM) to

minimize compute latency. Table I shows the resources con-

sumed by the extension logic (pattern checker, decision logic,

and control registers), other blocks of the packet movement

system (DMA, arbiter) and the optimised CFAR module. The

resources correspond to a parameter configuration allowing

three possible pathways for each packet (accelerator, DMA,

bypass), 8-word detection shift registers, double buffer FIFOs

with each buffer capable of holding full frames and 4-byte

wide registers in the control register. Table I shows that the

smart interface extensions consume less than 14% of the

resources (BRAMs) on the modest Zynq XC7Z020 device.

We measure the path and processing latency when the

packets are handled by the PS, a combination of PS and PL,

PL through DMA proxying, and the Smart-NI. The results

of our measurements are shown in Table II, recording the

packet latency (for each CFAR packet), the CFAR processing

latency and the maximum effective throughput achievable in

each case. To minimise overheads, we use layer-2 Ethernet

packets in the test and the measurements were averaged over

256 frames, each containing CFAR header-bytes and sensor

data as the payload. The packet route column specifies the

TABLE I: Resource Consumption on Xilinx Zynq XC7Z020.

Function FFs LUTs BRAMs DSPs

Extension Logic 1999 727 0 0

Rx FIFO 220 78 18 0

Rx Arbiter 107 57 0 0

PL-DMA 538 692 3 0

CFAR 4067 2715 10 42

Tx Arbiter 39 39 0 0

Tx FIFO 208 96 18 0

Total 9038 5920 49 42

(%) 8.49% 11.67% 17.5% 19.1%

destination address set in the PS Ethernet DMA controller

(either to PS DRAM or to the memory mapped location in PL),

and the execution logic column specifies whether the CFAR

processing is done in software on the ARM (ARM SW) or by

the custom logic in the PL (PL HW).

Forwarding packets into the PL adds around a 1 μs addi-

tional delay compared to moving packets to PS DRAM. This

difference is partly due to the low-throughput interface used by

the DMA controller (GP port instead of HP port) and partly

due to the interrupt scheme, wherein the PL interrupts the

processor only after a complete reception of the packet, while

the Ethernet DMA controller can mark completion of write to

DRAM even before the write into DRAM is completed.

The main difference is the processing latency. Software pro-

cessing incurs a large latency as it involves moving significant

data (read two data frames, FFT twiddle factors), performing

the FFT operation and running detection logic on the FFT

output array. Some of these tasks can be overlapped and the

measurements in Table II reflect the best case scenario where

data movement, frame decoding and frame receptions can

be overlapped to reduce the effective latency and the packet

reception interrupt is the only interrupt source in the system. In

this best case scenario, the maximum throughput achievable

using the purely PS approach (reception and processing) is

limited by the processing latency to around 2.3MB/s.

Higher throughput can be achieved by offloading the pro-

cessing to the dedicated hardware CFAR block in the PL.

Using DMA to move the frame data, the hardware logic

can complete the processing over 20× faster than software.

The intermediate data-movement can be reduced by using the

DMA proxying technique, which forwards the Ethernet frames

into the PL buffers, from where it can be fed directly to the

hardware CFAR block by checking the frame headers once

the packet is fully received. The Smart-NI approach further

improves on this as the fully pipelined structure enables almost

complete overlap of frame reception and CFAR processing

(because 2 frames of data are required for each CFAR cycle)

and minimises data movement latency by detecting/processing

the headers as the frame is received using the data-path

extensions. The Smart-NI approach thus improves the effective

throughput by around 27% compared the compute offloading

approach traditionally employed.
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TABLE II: Packet latency and throughput via PS and PL.

Packet route Execution Latency Effective

logic Packet Processing throughput

To DRAM ARM SW 14.391 μs 880.43 μs 2.34 MBps

To DRAM PL HW 14.391 μs 43.42 μs 47.17 MBps

PL (Proxying) PL HW 15.304 μs 35.76 μs 57.27 MBps

Smart-NI PL HW 15.304 μs 31.84 μs 64.32 MBps

Smart–NI

Proxying

PS–PL

PS–PS

50.05 μs

53.97 μs

62.56 μs

970.25 μs

Latency with overlapping

Frame arrival

Header decode

Frame movement

CFAR31.84 μs

37.43 μs

43.42 μs

880.43 μs

Fig. 4: Component contributions to overall latency for different

approaches. Worst-case latency shows all components, while

those that can be overlapped can reduce overall latency.

Fig. 4 shows the breakdown of the different components of

the latency in the system for the different scenarios. The PS–

PS scenario shows the traditional approach, where processing

contributes significantly to the overall latency and data move-

ment is also a significant contributor. Overlapping offers a

nearly 90 μs reduction in latency. The PS–PL scenario shows

a significant reduction in processing time, and overlapping

header processing and data movement offers a nearly 20 μs re-

duction in overall latency. With Proxying, the frame is received

in the PL where a processing block forwards the frame header

to PS for decision making, while the data segment is buffered

within the PL to minimise data movement (for PL processing),

reducing overall latency. Overlapping the reception, header

decode, and data movement with CFAR computation results

in a reduction of nearly 16 μs in overall latency. Finally the

Smart–NI approach, where the frame is received and processed

in the PL, maximum gain is achieved when the double-

buffering can be effectively utilised, achieving complete over-

lapping of reception and CFAR processing. Note that the

latency incurred by the PS-Ethernet controller and the slow

interconnect channels can be overcome through a dedicated PL

Ethernet interface (through an expansion interface like FMC)

and soft MAC cores in the PL, while also enabling significant

improvements via the Smart-NI extensions by integrating them

tightly within the MAC cores. However, the proposed approach

is completely general and can be applied to any Zynq platform.

IV. CONCLUSION

Hybrid fully-programmable architectures like the Xilinx

Zynq platform are key enablers for distributed processing

systems that deal with large data volumes and complex pro-

cessing. We presented an approach for achieving low-latency

processing in connected platforms by enabling compute close

to the network layer with data-layer extensions based on the

smart network interface concept. We show that this approach

significantly improves overall response time and processing

throughput compared to standard hardware-offload techniques.

Our case study showed that the smart network interface

approach achieves a nearly 37% increase in throughput and

27% reduction in compute latency, which can be replicated

in many applications that require complex processing on

volume data. In future, we aim to explore these extensions for

in-network on-demand accelerators and processing platforms

for decentralised systems interconnected by latency sensitive

networks like TSN or synchronous Ethernet.
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