
 

FEATURE ARTICLE: Automotive Computing 

Smart Network Interfaces 
for Advanced Automotive 
Applications 

Computing in vehicles has increased dramatically, 

with electronic control units (ECUs) communicating 

over increasingly complex and heterogeneous 

networks and presenting challenges in scalability, validation, and security. In this article, 

we describe the concept of smart network interfaces incorporating programmable 

computation at the network layer to enable hardware-level fault tolerance, application 

consolidation with sufficient isolation, and system-level security. 

In automotive networks, compute and communication are often considered distinctly, though 
they affect each other significantly. Overall system validation is a process that involves under-
standing the computational and communication delays and how these impact the higher layer 
applications implemented on these networks. Within this context, network interfaces serve 
simply to move data between the processors in the ECUs and the network, abiding by the speci-
fications of the adopted protocol. 

Computation in vehicular systems is organized in domains (such as the body domain, power-
train, and infotainment), with each domain being served by a network protocol that satisfies its 
specific requirements in terms of bandwidth, reliability, and other properties.1 The ECU systems 
for each domain integrate the respective network interfaces as an integrated peripheral on the 
same die (as a subsystem on the microcontroller itself) or through a separate ASIC interfaced 
externally. In either case, the network interface is an implementation of the defined protocol, 
such as the Bosch e-Ray in the case of FlexRay, and the protocol is adhered to closely.  

Extensions to standard protocol-layers allow unique features to be implemented; for example, a 
Controller Area Network (CAN) protocol called CAN+ offers 16× higher bandwidth than stand-
ard CAN, while maintaining backwards-compatibility with traditional CAN devices.2 We have 
proposed the idea of network-layer data-processing extensions as a way to support additional 
features. We designed an extended FlexRay network interface3 on an FPGA platform to show 
that a layer of configurable extensions offers additional capabilities (such as synchronous 
timestamps and on-the-fly message monitoring) that can be leveraged for unique platform-level 
capabilities (such as network security).4 These network layer extensions can also enable capabili-
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ties such as security through direct traffic monitoring on the network,5 as well as support light-
weight authentication schemes.6 Such network layer extensions can also enable deterministic 
routing of messages between different domains. In commercial Ethernet switches, FPGAs have 
been employed in line-rate switching systems for high-speed Ethernet, in-network traffic analyz-
ers, and intrusion detection.7 In the case of deterministic Ethernet standards such as time-sensi-
tive networks (TSNs), extensions within the network layer enable efficient implementation of 
fault-tolerance strategies, such as seamless redundancy, by managing low-level tasks such as 
packet-level retransmission and removal at the network layer.8 In the automotive domain, such 
applications are typically built using processors with multiple interfaces, incurring significant 
latency when moving data between Ethernet and legacy automotive networks.9 A smart FlexRay 
controller can also be incorporated in a gateway on a hybrid FPGA platform to enable determin-
istic interconnection of legacy automotive network standards and Ethernet, with data-path exten-
sions at the network interface layers to ensure low-latency switching performance and efficient 
message mapping for priority messages even with high network loads.10 

While computation in the automotive domain has predominantly used automotive-grade proces-
sors and microcontrollers, the idea of using FPGAs has gained some traction. Within the auto-
motive domain, FPGAs have been proposed as a compute platform for accelerating real-time 
vision-based driver assistance systems.11 FPGA-based architectures can also enable architecture-
level fault-tolerance through physical-level reconfiguration.12 

In this article, we show how programmable data paths in network interfaces can enable unique 
capabilities to support the increasing demands placed on automotive networks, and we validate 
these ideas on FPGAs. 

GENERAL CONCEPT 
In a traditional ECU setup, all computation is done in software that runs on an off-the-shelf auto-
motive-grade microcontroller unit that integrates the network interface and other peripherals (see 
Figure 1). The application receives information from the sensors over the network and processes 
it to determine what control outputs need to be fed to an actuator block or passed to another 
ECU. These individual tasks are invoked periodically based on a predefined schedule. The net-
work interface only manages functions related to the protocol, passing data between the network 
and the ECU processor, and not offering any additional capability that would require computa-
tional ability. As a result, any enhancement, such as monitoring health data or timestamping in-
dividual messages, must be managed through additional software on the ECU at the application 
layer. 

 
Figure 1. Typical ECU architecture incorporating one or more processing cores, memory elements, 
sensor interfaces, network interfaces, and hardware accelerators. 

Incorporating such system-level and low-level tasks in software can be challenging. Firstly, net-
work and software tasks are not always synchronized within an ECU, and software tasks are not 
synchronized across ECUs. Such capabilities at the application layer require additional tasks to 
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be added, increasing processor load and potentially requiring extensive rescheduling and revali-
dation of ECU functionality. Secondly, establishing a synchronized time-base across ECUs can 
be challenging because ECUs might not be active at all times. Finally, tasks on ECU processors 
are susceptible to delays resulting from interrupts and priority tasks 
with strict deadlines. All this can result in non-deterministic responses 
to events on the network or triggers from other ECUs. 

Introducing computational capability in the network layer can over-
come these challenges. The capability can transparently augment net-
work data to add information about system state, maintain a 
synchronized time-base across all ECUs, or apply other processing. 
This works similarly to layered protocol encapsulation in networks 
like Ethernet—the network interface adds a set of headers and 
timestamp information before embedding application data. At the re-
ceiving end, these headers are handled by the network layer, while ap-
plication data is passed on to the higher-layer software tasks. Such a 
protocol architecture for FlexRay is shown in Figure 2, with a 2-byte 
header and a 4-byte synchronous timestamp being added as data-layer 
headers by the network interface. The header can embed information 
about the state of the ECU (for diagnosis, fault-tolerance measures, or 
other purposes), the data format (for packing sequences of data to-
gether), and flags that indicate the presence of special network-layer 
messages. 

 
Figure 2. Data-layer headers embedded by the intelligent network controller. 

To achieve this transparent and deterministic functionality, a processing path parallel to the regu-
lar dataflow in the network interface is integrated, as shown in Figure 3, for the receive path for a 
FlexRay network interface. This parallel path allows regular messages to be forwarded to the 
software processor along the traditional path, while special messages (network-level or adapta-
tion schemes) can be processed deterministically within the interface itself, eliminating the need 
for software changes to handle such enhancements. In the receive direction, the extensions re-
ceive the decoded bytes from the network and use pattern detectors to extract the data-layer 
headers or other information from the payload segment. The timestamp logic leverages the net-
work protocol synchronization scheme and extends this to offer a synchronized view of time 
across all participating ECUs. 

The extensions can trigger specific actions to enhance capabilities; for example, a mode adapta-
tion message for an ECU that supports multiple operating modes (like a terrain response system) 
could be triggered directly from the extension, mitigating the non-deterministic factors caused by 
interrupts and software delays. Cipher primitives integrated within the data path (as shown in 
Figure 3) perform on-the-fly decryption on the protocol headers and application data without in-
curring additional latency. In the transmit direction, the extensions operate in the reverse order. 
They use information about system state (periodically updated by the application) and the 
timestamp logic to form a data-layer header, which is fed to the encryption block (if integrated) 
that takes 8-byte blocks (starting from the protocol header) and obfuscates them before encoding 
them to the bit-level format for transmission on the network. 

Introducing 

computational 

capability in the 

network layer can 

overcome [many] 

challenges. 
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Figure 3. Configurable extensions embedded within the receive path of the intelligent FlexRay 
network interface. 

Hence, integrating such intelligence at the network interface in a transparent manner enables 
unique capabilities without incurring valuable processor time to manage such low-level tasks. 
While we validate these ideas in the next section using FPGAs, this concept can be easily ap-
plied within new ASIC or SoC network interfaces by integrating a small programmable logic 
path to implement these extensions in the transmission and reception chains. 

CASE STUDIES 
To quantify the advantages of embedding computation into the network interface, we look at 
three case studies that relate to enhancements discussed in the previous section. First, we look at 
how integrating data packing and unpacking in the network interface can reduce processor over-
head. The second case study explores hardware-level adaptability by coupling a reconfiguration 
management system to the data-path extension in the network interface, improving the determin-
ism over a software-driven approach. The final example shows how cipher primitives can be em-
bedded within the data path of the network interface to offer both network and data security with 
no latency overhead on network transmission or impact on software applications. For all experi-
ments, we use the Xilinx Zynq hybrid FPGA device, because it reasonably approximates a typi-
cal automotive embedded architecture (with its dual-core ARM Cortex-A9 processor), while also 
allowing us to integrate the proposed hardware extensions on the same platform. For software 
evaluations, the application is run on top of the Standalone operating system from Xilinx, a very 
lightweight OS that abstracts some hardware details. Details of the FlexRay network interface 
design are discussed in another work.3 We use FlexRay and Ethernet as the network standards 
for experiments, but the same principles can be extended to other legacy automotive networks 
such as CAN, or newer standards such as TSN. 

Handling Volume Data at Interfaces 
In this case study, we consider the case of transmitting messages from a conventional FlexRay 
ECU to an Ethernet backbone network. We use an 8-byte message for this experiment (on 
FlexRay), as other work has shown that the 8-byte message size represents more than 70 percent 
of traffic on FlexRay-based vehicular systems. Multiple such messages are packed together to 
form a valid Ethernet payload of 64 bytes. With a software-based gateway, the processor has a 
fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at the net-
work interface (using an interrupt). The task reads the message into the Ethernet buffer and sets 
the “done” flag if the packet is ready to be transmitted (when 64 bytes have been filled), other-
wise it executes other tasks and waits for the next interrupt. Each of these actions incurs some 
latency, as shown in Table 1, with a best-case interrupt latency of 2.96 μs. As shown, the fetch-
and-pack task is executed multiple times every Ethernet frame, consuming considerable proces-
sor cycles in context switch and data movement (total latency of 26.08 μs). 
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Table 1. Data repacking for multi-cycle data transfers (64-byte data). 

Mode Latency Components Total Time Change 

 Interrupt Data Movement   

Software 2.96 μs x 8 0.3 μs x 8 26.08 μs  

Extension 2.96 μs x 1 0.3 μs x 8 5.36 μs –79 % 
 

Embedding this capability into the network layer allows the interface to pack multiple messages 
into an Ethernet payload, which can be read with a simpler fetch task, reducing latency by 
around 80 percent. It should also be noted that many tasks in an automotive system are non-
preemptible to ensure strict deadlines, which could increase performance gains further. Finally, a 
fully hardware-based packing and switching system that does not rely on software tasks further 
cuts down the latency to 3.3 μs, including the transmission latency over the Ethernet link 
(through hardware-based packing and forwarding measured on actual hardware), and is a more 
viable solution for high-performance automotive gateways (see VEGa10). Such packing also ap-
plies to ECUs that deal with data-dense sensors, such as radar or cameras. 

Hardware-Level Adaptation 
This case study explores the benefits of coupling device-level capabil-
ities such as dynamic reconfiguration with the data-path extensions in 
the network interface. Consider an ECU system that can adapt its con-
trol algorithm in response to changes in environmental conditions or 
user settings, like an adaptive terrain response system that is common 
in off-road-capable vehicles. Because these different modes of opera-
tion are mutually exclusive, it is sensible to have them swap in and out 
as required to save area and power. The Zynq platform enables hard-
ware blocks to be selectively modified to adapt the processing logic 
through a processor-based PCAP interface. In this scenario, a software 
task that monitors information from sensors or user inputs (over the 
network) triggers a reconfiguration through the processor, keeping the 
processor occupied with a non-preemptible task until reconfiguration 
is completed. 

Alternatively, by interfacing the low-level reconfiguration primitives 
with the network extensions, the reconfiguration process can be fully 
handled by the interface, while the processor carries out its regular 
tasks. The custom reconfiguration system determines the mode to be 
chosen, fetches the new hardware configuration (through DMA) and 
configures the hardware block without processor intervention. The time consumed for the adap-
tation process (from message reception to adaptation) in both cases is shown in Table 2. The 
software technique keeps the processor occupied for 2.26 ms for the reconfiguration of a small 
hardware block (3 percent of device resources), delaying other tasks significantly. By handling 
the reconfiguration through the network interface, the processor continues to execute its tasks 
normally; this approach also offers improved reconfiguration performance (reduced by 66 per-
cent), allowing for a faster switch to the new mode. For more complex hardware blocks that in-
cur more resources, the processor-driven reconfiguration can result in the processor being busy 
for tens of milliseconds, and it might not be a viable option in critical systems. 

 

 

[There are benefits 

to] coupling device-

level capabilities 

such as dynamic 

reconfiguration with 

the data-path 

extensions in the 

network interface. 
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Table 2. Comparison of adaptation times when handled through software or through the hardware 
extension within the smart network interface. 

Mode Latency Components Total Time Change 

 Interrupt Data 
Movement 

Reconfigura-
tion   

Software (PCAP) 2.96 μs 0.3 μs 2,257.9 μs 2,261.1 μs  

Hardware intelligence 
with custom ICAP N/A N/A 759.4 μs 759.4 μs –66 % 

 

Network Security 
This case study shows how a security architecture can be integrated seamlessly as an extension 
of the network interface with zero latency overhead. Our prior work showed that security primi-
tives within the network interface can authenticate application code and protect the network from 
unauthorized access.4 However, the key challenge is to integrate this complex security architec-
ture in a manner that introduces minimal overheads in latency (for the network or application) 
and without affecting protocol guarantees. For security managed through software, the encrypted 
message received from the network must be read and decrypted using the current configuration 
of the cipher primitives before the information can be used by the application. As shown in Table 
3, this results in considerable overheads (41.5 μs) per 8 bytes of sensor data, for a lightweight 
symmetric cipher, PRESENT, at a minimal security setting of 32 rounds (meaning each block of 
data is encrypted and decrypted over the entire cycle 32 times). Increasing the security level 
(more rounds) increases the latency super-linearly due to the complexity associated with manag-
ing the cipher operations (such as memory requirements and computation of intermediate stage 
keys). For comparison, the slot width on a standard 5-ms FlexRay cycle that supports 64 (static) 
slots is around 65 μs, and the increased security level results in a lost window for transmission. 
Moreover, the software tasks are not synchronized to network timing, while the self-adaptive na-
ture of networks such as FlexRay causes the application and network to drift out of sync, causing 
further errors due to missed transmissions.  

Table 3. Latency introduced by the PRESENT cipher on a Xilinx Zynq ARM core per 8 bytes of 
data, compared to the smart controller that embeds the same cipher block in its data path. 

Mode Rounds Latency Components Total 
Delay 

Encryption  TS Read Encrypt Writeback  

Software 
32 0.3 μs 40.9 μs 0.3 μs 41.5 μs 

64 0.3 μs 82.6 μs 0.3 μs 83.2 μs 

Extension 
Up to 

N/A 
0 μs 

0.3 μs 0.3 μs 
470 overlaps with txn 

Decryption  Data Read TS Read Decrypt  

Software 32 0.6 μs 0.3 μs 42.1 μs 43.0 μs 

64 0.6 μs 0.3 μs 85.2 μs 86.1 μs 

Extension 
Up to 

0.3 μs N/A 
0 μs 

0.3 μs 
470 overlaps with rxn 
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Embedding the security primitive within the network interface allows 
the cipher operations to be synchronized with the network timing, en-
suring guaranteed transmission at all times. Within the data path, 
prefetching and extensive pipelining allow the transmission/reception 
of the data segments to be overlapped with the encryption/decryption 
process. An abstract timing diagram of the process is shown in Figure 
4. The frame headers are prefetched at the start of the transmission slot 
and are encrypted (along with the frame timestamp tn, labelled TS) us-
ing the pre-shared key (PSK) before the start of frame sequence and 
the flag bits have been transmitted. Subsequently, the transmission of 
the frame header is overlapped with the encryption of the first 8 bytes 
of data and so on. The timestamp-based key technique (PSK + tn) en-
sures that the encrypted data varies in every slot even if the actual ap-
plication data is static, which is common in many automotive 
applications. Also, the overlap allows higher levels of security (up to 
470 rounds) per 8-byte data block before the slightest violation of tim-
ing boundaries, as shown in Table 3 for both transmission and recep-
tion. Furthermore, the network extensions can also manage a security 
adaptation frame (a special frame for adapting security specifics) with-
out intervention from the application, allowing the security scheme to 
be fully transparent to the application. 

 
Figure 4. Timing diagram showing the overlapping of transmission with the encryption process to 
effectively hide the encryption latency for the header and data segment of the communication. The 
start of slot timestamp t0 registered in the TS Register is used to improve the entropy of the header 
(by encrypting Header + t0 using the PSK, labelled E(Hdr+t0)) and for randomizing the data 
segment (by using a PSK + t0 as key, labelled E_t0(Data1)). 

Overheads 
While embedding smart capabilities into the network interface improves the overall determinism 
and flexibility of the system, it does incur some cost in terms of hardware resources and power 
consumption, as shown in Table 4, when implemented on a small Xilinx Zynq Z-7020 device. 
The simple data-path extensions (pattern detectors and timestamp logic) on an otherwise stand-
ard FlexRay network interface increase resource consumption by 28.9 percent (for registers, with 
dual-channel mode), with a negligible increase in power consumption. Interfacing the reconfigu-
ration management increases resource consumption of the intelligent network interface by 11.8 

Embedding the 

security primitive 

within the network 

interface allows the 

cipher operations to 

be synchronized 

with the network 

timing, ensuring 

guaranteed 

transmission at all 

times. 
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percent (for registers), with no appreciable increase in power consumption. However, incorporat-
ing network security within the interface for both channels on a FlexRay network incurs an addi-
tional 98.7 percent of resources (for registers) and increases the overall power consumption of 
the network interface by 24 percent (36 mW). Similarly, incorporating the data-segment protocol 
discussed previously reduces the payload capacity of the FlexRay frame to 248 bytes. Despite 
these minor overheads (compared to the available resource on the chip, with the highest occu-
pancy being 6 percent of LUTs), the smarter network interface offers unique ways to enhance the 
system’s performance and capabilities, some of which are impossible to achieve using a soft-
ware-based implementation. 

Table 4. Area and power overheads on a Xilinx Zynq Z-7020 device. 

 

We must state once more that while these experiments were validated on FPGAs, the approach 
could equally be applied in the design of new network interface ASICs, where a programmable 
data-path segment could be integrated. 

CONCLUSION 
This article presents the concept of integrating a programmable computation layer within auto-
motive network interfaces. This offers unique ways to address emerging challenges in vehicular 
systems, namely security, deterministic performance, and hardware-level adaptation. We demon-
strated the approach using a prototype implementation of a smart FlexRay network interface on 
FPGA and evaluated the benefits, as well as overheads, associated with the approach. Our evalu-
ation demonstrates that smart network interfaces offer significant improvements in terms of pro-
cessing and response times over traditional software approaches. 
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