

FEATURE ARTICLE: Automotive Computing

Smart Network Interfaces
for Advanced Automotive
Applications

Computing in vehicles has increased dramatically,

with electronic control units (ECUs) communicating

over increasingly complex and heterogeneous

networks and presenting challenges in scalability, validation, and security. In this article,

we describe the concept of smart network interfaces incorporating programmable

computation at the network layer to enable hardware-level fault tolerance, application

consolidation with sufficient isolation, and system-level security.

In automotive networks, compute and communication are often considered distinctly, though
they affect each other significantly. Overall system validation is a process that involves under-
standing the computational and communication delays and how these impact the higher layer
applications implemented on these networks. Within this context, network interfaces serve
simply to move data between the processors in the ECUs and the network, abiding by the speci-
fications of the adopted protocol.

Computation in vehicular systems is organized in domains (such as the body domain, power-
train, and infotainment), with each domain being served by a network protocol that satisfies its
specific requirements in terms of bandwidth, reliability, and other properties.1 The ECU systems
for each domain integrate the respective network interfaces as an integrated peripheral on the
same die (as a subsystem on the microcontroller itself) or through a separate ASIC interfaced
externally. In either case, the network interface is an implementation of the defined protocol,
such as the Bosch e-Ray in the case of FlexRay, and the protocol is adhered to closely.

Extensions to standard protocol-layers allow unique features to be implemented; for example, a
Controller Area Network (CAN) protocol called CAN+ offers 16× higher bandwidth than stand-
ard CAN, while maintaining backwards-compatibility with traditional CAN devices.2 We have
proposed the idea of network-layer data-processing extensions as a way to support additional
features. We designed an extended FlexRay network interface3 on an FPGA platform to show
that a layer of configurable extensions offers additional capabilities (such as synchronous
timestamps and on-the-fly message monitoring) that can be leveraged for unique platform-level
capabilities (such as network security).4 These network layer extensions can also enable capabili-

Shanker Shreejith and
Suhaib A. Fahmy
University of Warwick, UK

72
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMarch/April 2018

 IEEE MICRO

ties such as security through direct traffic monitoring on the network,5 as well as support light-
weight authentication schemes.6 Such network layer extensions can also enable deterministic
routing of messages between different domains. In commercial Ethernet switches, FPGAs have
been employed in line-rate switching systems for high-speed Ethernet, in-network traffic analyz-
ers, and intrusion detection.7 In the case of deterministic Ethernet standards such as time-sensi-
tive networks (TSNs), extensions within the network layer enable efficient implementation of
fault-tolerance strategies, such as seamless redundancy, by managing low-level tasks such as
packet-level retransmission and removal at the network layer.8 In the automotive domain, such
applications are typically built using processors with multiple interfaces, incurring significant
latency when moving data between Ethernet and legacy automotive networks.9 A smart FlexRay
controller can also be incorporated in a gateway on a hybrid FPGA platform to enable determin-
istic interconnection of legacy automotive network standards and Ethernet, with data-path exten-
sions at the network interface layers to ensure low-latency switching performance and efficient
message mapping for priority messages even with high network loads.10

While computation in the automotive domain has predominantly used automotive-grade proces-
sors and microcontrollers, the idea of using FPGAs has gained some traction. Within the auto-
motive domain, FPGAs have been proposed as a compute platform for accelerating real-time
vision-based driver assistance systems.11 FPGA-based architectures can also enable architecture-
level fault-tolerance through physical-level reconfiguration.12

In this article, we show how programmable data paths in network interfaces can enable unique
capabilities to support the increasing demands placed on automotive networks, and we validate
these ideas on FPGAs.

GENERAL CONCEPT
In a traditional ECU setup, all computation is done in software that runs on an off-the-shelf auto-
motive-grade microcontroller unit that integrates the network interface and other peripherals (see
Figure 1). The application receives information from the sensors over the network and processes
it to determine what control outputs need to be fed to an actuator block or passed to another
ECU. These individual tasks are invoked periodically based on a predefined schedule. The net-
work interface only manages functions related to the protocol, passing data between the network
and the ECU processor, and not offering any additional capability that would require computa-
tional ability. As a result, any enhancement, such as monitoring health data or timestamping in-
dividual messages, must be managed through additional software on the ECU at the application
layer.

Figure 1. Typical ECU architecture incorporating one or more processing cores, memory elements,
sensor interfaces, network interfaces, and hardware accelerators.

Incorporating such system-level and low-level tasks in software can be challenging. Firstly, net-
work and software tasks are not always synchronized within an ECU, and software tasks are not
synchronized across ECUs. Such capabilities at the application layer require additional tasks to

73March/April 2018 www.computer.org/micro

 AUTOMOTIVE COMPUTING

be added, increasing processor load and potentially requiring extensive rescheduling and revali-
dation of ECU functionality. Secondly, establishing a synchronized time-base across ECUs can
be challenging because ECUs might not be active at all times. Finally, tasks on ECU processors
are susceptible to delays resulting from interrupts and priority tasks
with strict deadlines. All this can result in non-deterministic responses
to events on the network or triggers from other ECUs.

Introducing computational capability in the network layer can over-
come these challenges. The capability can transparently augment net-
work data to add information about system state, maintain a
synchronized time-base across all ECUs, or apply other processing.
This works similarly to layered protocol encapsulation in networks
like Ethernet—the network interface adds a set of headers and
timestamp information before embedding application data. At the re-
ceiving end, these headers are handled by the network layer, while ap-
plication data is passed on to the higher-layer software tasks. Such a
protocol architecture for FlexRay is shown in Figure 2, with a 2-byte
header and a 4-byte synchronous timestamp being added as data-layer
headers by the network interface. The header can embed information
about the state of the ECU (for diagnosis, fault-tolerance measures, or
other purposes), the data format (for packing sequences of data to-
gether), and flags that indicate the presence of special network-layer
messages.

Figure 2. Data-layer headers embedded by the intelligent network controller.

To achieve this transparent and deterministic functionality, a processing path parallel to the regu-
lar dataflow in the network interface is integrated, as shown in Figure 3, for the receive path for a
FlexRay network interface. This parallel path allows regular messages to be forwarded to the
software processor along the traditional path, while special messages (network-level or adapta-
tion schemes) can be processed deterministically within the interface itself, eliminating the need
for software changes to handle such enhancements. In the receive direction, the extensions re-
ceive the decoded bytes from the network and use pattern detectors to extract the data-layer
headers or other information from the payload segment. The timestamp logic leverages the net-
work protocol synchronization scheme and extends this to offer a synchronized view of time
across all participating ECUs.

The extensions can trigger specific actions to enhance capabilities; for example, a mode adapta-
tion message for an ECU that supports multiple operating modes (like a terrain response system)
could be triggered directly from the extension, mitigating the non-deterministic factors caused by
interrupts and software delays. Cipher primitives integrated within the data path (as shown in
Figure 3) perform on-the-fly decryption on the protocol headers and application data without in-
curring additional latency. In the transmit direction, the extensions operate in the reverse order.
They use information about system state (periodically updated by the application) and the
timestamp logic to form a data-layer header, which is fed to the encryption block (if integrated)
that takes 8-byte blocks (starting from the protocol header) and obfuscates them before encoding
them to the bit-level format for transmission on the network.

Introducing

computational

capability in the

network layer can

overcome [many]

challenges.

74March/April 2018 www.computer.org/micro

 IEEE MICRO

Figure 3. Configurable extensions embedded within the receive path of the intelligent FlexRay
network interface.

Hence, integrating such intelligence at the network interface in a transparent manner enables
unique capabilities without incurring valuable processor time to manage such low-level tasks.
While we validate these ideas in the next section using FPGAs, this concept can be easily ap-
plied within new ASIC or SoC network interfaces by integrating a small programmable logic
path to implement these extensions in the transmission and reception chains.

CASE STUDIES
To quantify the advantages of embedding computation into the network interface, we look at
three case studies that relate to enhancements discussed in the previous section. First, we look at
how integrating data packing and unpacking in the network interface can reduce processor over-
head. The second case study explores hardware-level adaptability by coupling a reconfiguration
management system to the data-path extension in the network interface, improving the determin-
ism over a software-driven approach. The final example shows how cipher primitives can be em-
bedded within the data path of the network interface to offer both network and data security with
no latency overhead on network transmission or impact on software applications. For all experi-
ments, we use the Xilinx Zynq hybrid FPGA device, because it reasonably approximates a typi-
cal automotive embedded architecture (with its dual-core ARM Cortex-A9 processor), while also
allowing us to integrate the proposed hardware extensions on the same platform. For software
evaluations, the application is run on top of the Standalone operating system from Xilinx, a very
lightweight OS that abstracts some hardware details. Details of the FlexRay network interface
design are discussed in another work.3 We use FlexRay and Ethernet as the network standards
for experiments, but the same principles can be extended to other legacy automotive networks
such as CAN, or newer standards such as TSN.

Handling Volume Data at Interfaces
In this case study, we consider the case of transmitting messages from a conventional FlexRay
ECU to an Ethernet backbone network. We use an 8-byte message for this experiment (on
FlexRay), as other work has shown that the 8-byte message size represents more than 70 percent
of traffic on FlexRay-based vehicular systems. Multiple such messages are packed together to
form a valid Ethernet payload of 64 bytes. With a software-based gateway, the processor has a
fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at the net-
work interface (using an interrupt). The task reads the message into the Ethernet buffer and sets
the “done” flag if the packet is ready to be transmitted (when 64 bytes have been filled), other-
wise it executes other tasks and waits for the next interrupt. Each of these actions incurs some
latency, as shown in Table 1, with a best-case interrupt latency of 2.96 μs. As shown, the fetch-
and-pack task is executed multiple times every Ethernet frame, consuming considerable proces-
sor cycles in context switch and data movement (total latency of 26.08 μs).

75March/April 2018 www.computer.org/micro

 AUTOMOTIVE COMPUTING

Table 1. Data repacking for multi-cycle data transfers (64-byte data).

Mode Latency Components Total Time Change

 Interrupt Data Movement

Software 2.96 μs x 8 0.3 μs x 8 26.08 μs

Extension 2.96 μs x 1 0.3 μs x 8 5.36 μs –79 %

Embedding this capability into the network layer allows the interface to pack multiple messages
into an Ethernet payload, which can be read with a simpler fetch task, reducing latency by
around 80 percent. It should also be noted that many tasks in an automotive system are non-
preemptible to ensure strict deadlines, which could increase performance gains further. Finally, a
fully hardware-based packing and switching system that does not rely on software tasks further
cuts down the latency to 3.3 μs, including the transmission latency over the Ethernet link
(through hardware-based packing and forwarding measured on actual hardware), and is a more
viable solution for high-performance automotive gateways (see VEGa10). Such packing also ap-
plies to ECUs that deal with data-dense sensors, such as radar or cameras.

Hardware-Level Adaptation
This case study explores the benefits of coupling device-level capabil-
ities such as dynamic reconfiguration with the data-path extensions in
the network interface. Consider an ECU system that can adapt its con-
trol algorithm in response to changes in environmental conditions or
user settings, like an adaptive terrain response system that is common
in off-road-capable vehicles. Because these different modes of opera-
tion are mutually exclusive, it is sensible to have them swap in and out
as required to save area and power. The Zynq platform enables hard-
ware blocks to be selectively modified to adapt the processing logic
through a processor-based PCAP interface. In this scenario, a software
task that monitors information from sensors or user inputs (over the
network) triggers a reconfiguration through the processor, keeping the
processor occupied with a non-preemptible task until reconfiguration
is completed.

Alternatively, by interfacing the low-level reconfiguration primitives
with the network extensions, the reconfiguration process can be fully
handled by the interface, while the processor carries out its regular
tasks. The custom reconfiguration system determines the mode to be
chosen, fetches the new hardware configuration (through DMA) and
configures the hardware block without processor intervention. The time consumed for the adap-
tation process (from message reception to adaptation) in both cases is shown in Table 2. The
software technique keeps the processor occupied for 2.26 ms for the reconfiguration of a small
hardware block (3 percent of device resources), delaying other tasks significantly. By handling
the reconfiguration through the network interface, the processor continues to execute its tasks
normally; this approach also offers improved reconfiguration performance (reduced by 66 per-
cent), allowing for a faster switch to the new mode. For more complex hardware blocks that in-
cur more resources, the processor-driven reconfiguration can result in the processor being busy
for tens of milliseconds, and it might not be a viable option in critical systems.

[There are benefits

to] coupling device-

level capabilities

such as dynamic

reconfiguration with

the data-path

extensions in the

network interface.

76March/April 2018 www.computer.org/micro

 IEEE MICRO

Table 2. Comparison of adaptation times when handled through software or through the hardware
extension within the smart network interface.

Mode Latency Components Total Time Change

 Interrupt Data
Movement

Reconfigura-
tion

Software (PCAP) 2.96 μs 0.3 μs 2,257.9 μs 2,261.1 μs

Hardware intelligence
with custom ICAP N/A N/A 759.4 μs 759.4 μs –66 %

Network Security
This case study shows how a security architecture can be integrated seamlessly as an extension
of the network interface with zero latency overhead. Our prior work showed that security primi-
tives within the network interface can authenticate application code and protect the network from
unauthorized access.4 However, the key challenge is to integrate this complex security architec-
ture in a manner that introduces minimal overheads in latency (for the network or application)
and without affecting protocol guarantees. For security managed through software, the encrypted
message received from the network must be read and decrypted using the current configuration
of the cipher primitives before the information can be used by the application. As shown in Table
3, this results in considerable overheads (41.5 μs) per 8 bytes of sensor data, for a lightweight
symmetric cipher, PRESENT, at a minimal security setting of 32 rounds (meaning each block of
data is encrypted and decrypted over the entire cycle 32 times). Increasing the security level
(more rounds) increases the latency super-linearly due to the complexity associated with manag-
ing the cipher operations (such as memory requirements and computation of intermediate stage
keys). For comparison, the slot width on a standard 5-ms FlexRay cycle that supports 64 (static)
slots is around 65 μs, and the increased security level results in a lost window for transmission.
Moreover, the software tasks are not synchronized to network timing, while the self-adaptive na-
ture of networks such as FlexRay causes the application and network to drift out of sync, causing
further errors due to missed transmissions.

Table 3. Latency introduced by the PRESENT cipher on a Xilinx Zynq ARM core per 8 bytes of
data, compared to the smart controller that embeds the same cipher block in its data path.

Mode Rounds Latency Components Total
Delay

Encryption TS Read Encrypt Writeback

Software
32 0.3 μs 40.9 μs 0.3 μs 41.5 μs

64 0.3 μs 82.6 μs 0.3 μs 83.2 μs

Extension
Up to

N/A
0 μs

0.3 μs 0.3 μs
470 overlaps with txn

Decryption Data Read TS Read Decrypt

Software 32 0.6 μs 0.3 μs 42.1 μs 43.0 μs

64 0.6 μs 0.3 μs 85.2 μs 86.1 μs

Extension
Up to

0.3 μs N/A
0 μs

0.3 μs
470 overlaps with rxn

77March/April 2018 www.computer.org/micro

 AUTOMOTIVE COMPUTING

Embedding the security primitive within the network interface allows
the cipher operations to be synchronized with the network timing, en-
suring guaranteed transmission at all times. Within the data path,
prefetching and extensive pipelining allow the transmission/reception
of the data segments to be overlapped with the encryption/decryption
process. An abstract timing diagram of the process is shown in Figure
4. The frame headers are prefetched at the start of the transmission slot
and are encrypted (along with the frame timestamp tn, labelled TS) us-
ing the pre-shared key (PSK) before the start of frame sequence and
the flag bits have been transmitted. Subsequently, the transmission of
the frame header is overlapped with the encryption of the first 8 bytes
of data and so on. The timestamp-based key technique (PSK + tn) en-
sures that the encrypted data varies in every slot even if the actual ap-
plication data is static, which is common in many automotive
applications. Also, the overlap allows higher levels of security (up to
470 rounds) per 8-byte data block before the slightest violation of tim-
ing boundaries, as shown in Table 3 for both transmission and recep-
tion. Furthermore, the network extensions can also manage a security
adaptation frame (a special frame for adapting security specifics) with-
out intervention from the application, allowing the security scheme to
be fully transparent to the application.

Figure 4. Timing diagram showing the overlapping of transmission with the encryption process to
effectively hide the encryption latency for the header and data segment of the communication. The
start of slot timestamp t0 registered in the TS Register is used to improve the entropy of the header
(by encrypting Header + t0 using the PSK, labelled E(Hdr+t0)) and for randomizing the data
segment (by using a PSK + t0 as key, labelled E_t0(Data1)).

Overheads
While embedding smart capabilities into the network interface improves the overall determinism
and flexibility of the system, it does incur some cost in terms of hardware resources and power
consumption, as shown in Table 4, when implemented on a small Xilinx Zynq Z-7020 device.
The simple data-path extensions (pattern detectors and timestamp logic) on an otherwise stand-
ard FlexRay network interface increase resource consumption by 28.9 percent (for registers, with
dual-channel mode), with a negligible increase in power consumption. Interfacing the reconfigu-
ration management increases resource consumption of the intelligent network interface by 11.8

Embedding the

security primitive

within the network

interface allows the

cipher operations to

be synchronized

with the network

timing, ensuring

guaranteed

transmission at all

times.

78March/April 2018 www.computer.org/micro

 IEEE MICRO

percent (for registers), with no appreciable increase in power consumption. However, incorporat-
ing network security within the interface for both channels on a FlexRay network incurs an addi-
tional 98.7 percent of resources (for registers) and increases the overall power consumption of
the network interface by 24 percent (36 mW). Similarly, incorporating the data-segment protocol
discussed previously reduces the payload capacity of the FlexRay frame to 248 bytes. Despite
these minor overheads (compared to the available resource on the chip, with the highest occu-
pancy being 6 percent of LUTs), the smarter network interface offers unique ways to enhance the
system’s performance and capabilities, some of which are impossible to achieve using a soft-
ware-based implementation.

Table 4. Area and power overheads on a Xilinx Zynq Z-7020 device.

We must state once more that while these experiments were validated on FPGAs, the approach
could equally be applied in the design of new network interface ASICs, where a programmable
data-path segment could be integrated.

CONCLUSION
This article presents the concept of integrating a programmable computation layer within auto-
motive network interfaces. This offers unique ways to address emerging challenges in vehicular
systems, namely security, deterministic performance, and hardware-level adaptation. We demon-
strated the approach using a prototype implementation of a smart FlexRay network interface on
FPGA and evaluated the benefits, as well as overheads, associated with the approach. Our evalu-
ation demonstrates that smart network interfaces offer significant improvements in terms of pro-
cessing and response times over traditional software approaches.

REFERENCES
1. N. Navet and F. Simonot-Lion, In-vehicle communication networks - a historical

perspective and review, University of Luxembourg, 2013;
http://orbilu.uni.lu/handle/10993/5540.

2. T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new backward-compatible
Controller Area Network (CAN) protocol with up to 16x higher data rates,”
Proceedings of the Design Automation and Test in Europe Conference (DATE), 2009;
https://dl.acm.org/citation.cfm?id=1874885.

3. S. Shreejith and S.A. Fahmy, “Extensible FlexRay Communication Controller for
FPGA-Based Automotive Systems,” IEEE Transactions on Vehicular Technology, vol.
64, no. 2, 2015, pp. 453–465; http://ieeexplore.ieee.org/document/6816104/.

4. S. Shreejith and S.A. Fahmy, “Security Aware Network Controllers for Next
Generation Automotive Embedded Systems,” Proceedings of the Design Automation
Conference (DAC), 2015, p. 39:1; http://ieeexplore.ieee.org/document/7167223/.

Implementation Normalized Resource
Consumption

Peak Resource Power Con-
sumption

 Reg LUTs BRAMs

FlexRay with data-
path extensions

1.29 x 1.20 x 1.00 x 21.0 % (LUTs) 1.02 x

Intelligent network
interface

1.42 x 1.27 x 1.06 x 22.4 % (LUTs) 1.02 x

Secure FlexRay in-
terface

2.27 x 1.51 x 1.63 x 26.7 % (LUTs) 1.26 x

79March/April 2018 www.computer.org/micro

 AUTOMOTIVE COMPUTING

5. P. Waszecki et al., “Automotive electrical/electronic architecture security via
distributed in-vehicle traffic monitoring,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 36, no. 11, 2017, pp. 1790–1803;
http://ieeexplore.ieee.org/document/7849145/.

6. P. Mundhenk et al., “Security in automotive networks: Lightweight authentication and
authorization,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 22, no. 2, 2017, p. 25:1; https://dl.acm.org/citation.cfm?id=2960407.

7. G. Carvajal et al., “Atacama: An Open FPGA-Based Platform for Mixed-Criticality
Communication in Multi-segmented Ethernet Networks,” Proceedings of the
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2013, pp. 121–128; http://ieeexplore.ieee.org/document/6546006/.

8. F. Groß et al., “A hardware/software co-design approach for ethernet controllers to
support time-triggered traffic in the upcoming IEEE TSN standards,” Proceedings of
the International Conference on Consumer Electronics Berlin (ICCE-Berlin), 2014;
http://ieeexplore.ieee.org/document/7034229/.

9. J.H. Kim et al., “Gateway Framework for In-Vehicle Networks based on CAN,
FlexRay and Ethernet,” IEEE Transactions on Vehicular Technology (TVT), vol. 64,
no. 10, 2015, pp. 4472–4486; http://ieeexplore.ieee.org/document/6960111/.

10. S. Shreejith et al., “VEGa: A high performance vehicular Ethernet gateway on hybrid
FPGA,” IEEE Transactions on Computers, vol. 66, no. 10, 2017, pp. 1790–1803;
http://ieeexplore.ieee.org/document/7917319/.

11. C. Claus et al., “Towards rapid dynamic partial reconfiguration in video-based driver
assistance systems,” Proceedings of the International Symposium on Applied
Reconfigurable Computing (ARC), 2010;
https://link.springer.com/chapter/10.1007%2F978-3-642-12133-3_8.

12. S. Shreejith et al., “An Approach for Redundancy in FlexRay Networks Using FPGA
Partial Reconfiguration,” Proceedings of the Design, Automation and Test in Europe
Conference (DATE), 2013, pp. 721–724;
http://ieeexplore.ieee.org/document/6513601/.

ABOUT THE AUTHORS
Shanker Shreejith is a teaching fellow at the School of Engineering, University of War-
wick, UK. His research interests include distributed computing architectures and reconfigu-
rable systems. He has a PhD in computer science and engineering from Nanyang
Technological University, Singapore. Contact him at s.shanker@warwick.ac.uk.

Suhaib A. Fahmy is an associate professor at the School of Engineering, University of
Warwick, UK, where he leads the Connected Systems Research Group. His research inter-
ests include reconfigurable computing, embedded systems, and hardware acceleration. He
has a PhD in electrical and electronic engineering from Imperial College London, UK. Con-
tact him at s.fahmy@warwick.ac.uk.

80March/April 2018 www.computer.org/micro

