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Abstract—Cyber Physical Systems (CPSs), such as those found
in modern vehicles, include a number of important time and
safety-critical functions. Traditionally, applications are mapped
to several dedicated electronic control units (ECUs), and hence,
as new functions are added, compute weight and cost increase
considerably. With increasing computational and communication
demands, traditional software ECUs fail to offer the required
performance to provide determinism and predictability, while
multi-core approaches fail to provide sufficient isolation between
tasks. Hybrid FPGAs, combining a processor and reconfigurable
fabric on a single die, allow for parallel hardware implementation
of complex sensor processing tightly coupled with the flexibility
of software on a processor. We demonstrate the advantages
of such architectures in consolidating distributed processing
with predictability, determinism and isolation, enabling ECU
consolidation and bandwidth reduction.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are embedded computing
systems in which computation interacts closely with the phys-
ical world through sensors and actuators. Examples of such
systems are abundant in many domains including automotive
systems. For instance, a modern-day car comprises several
computing components that perform complex functions such
as Anti-Lock Braking (ABS), Adaptive Cruise Control (ACC),
Collision Avoidance (CA), satellite-based navigation and info-
tainment. Some of these components like ABS, ACC and CA
are time-critical and/or safety-critical, in that the implemented
functionality must not only be correct, but must also meet
bounded latency constraints.

Fig. 1 shows a typical ACC and CA system comprising var-
ious sensors such as radar, lidar, and cameras. Upon receiving
periodic inputs from these sensors, the ECUs process the data
to extract relevant information (denoted as the Observe phase).
Thereafter, based on the observed inputs and mode require-
ments set by the driver (e.g., following distance and maximum
acceleration), the system executes a control algorithm to decide
how much acceleration or deceleration is required (denoted
as the Decide phase). Finally, the system sends commands to
the acceleration and braking actuators to take the necessary
actions (denoted as the Act phase). Since this is time-critical
functionality that requires ISO26262 certification [1], the end-
to-end latency from sensing to actuation must be bounded and
statically verifiable. We refer to such systems as Real-Time
Cyber-Physical Systems (RT-CPS).

There are a wide variety of new functions for driver
comfort and safety in modern vehicles, and these typically
rely on new sensors and complex processing. As automation
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Fig. 1. (a) A collision avoidance system. (b) An Automatic Cruise Control
showing sensors and actuators.

increases, the need to fuse together information from multiple
sensors and adapt to changing environmental conditions will
drive the choice of implementation platforms. Within the
automotive space, this trend has already taken hold, with a
typical car today housing up to 100 or more ECUs supporting
these functions [2]. Connectivity beyond the vehicle is also
an important trend; car-to-car communication with the help
of roadside beacons and satellites is under consideration [3].
Hence, vehicles can be considered as distributed computing
systems that also interact with each other.

When implementing RT-CPSs, most designers use general
purpose or domain-specific processors to minimise cost as
well as Size, Weight and Power (SWaP). These processors
are combined with the necessary communication interfaces
to create a general Electronic Control Unit (ECU). Typically,
a single ECU is dedicated to the execution of one or more
modules of a single application. For example, the Observe
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phase of ACC and CA applications is executed on dedicated
ECUs physically close to the sensors. This pre-processed
information is then sent via a Controller Area Network (CAN)
bus to the ECU that executes the Decide phase. Once a
decision is made, it is conveyed, again via CAN, to the actuator
ECUs that are physically close to the accelerator and brake.
Modern vehicles host a plethora of sensors and advanced
functions, requiring high processing power and communication
bandwidth. A traditional processing paradigm with sequential
processor execution cannot provide the required determinism
and predictability for these functions, many of which are
safety-critical. One approach has been to utilise the processing
capabilities of multi-core processors [4], [5]. However, multi-
core architectures cannot not ensure the required isolation be-
tween the different sensor data (and hence their applications),
since they share significant resources between the cores and
thus, may not provide the required predictability [6].

Reconfigurable devices, particularly more recent hybrid
field programmable gate arrays (FPGAs), provide a promising
platform for addressing these challenges [7]. Hybrid FPGAs
integrate capable processors with a reconfigurable hardware
fabric on the same chip, enabling parallel implementation
of complex data processing in hardware, with software sup-
ported flexible control. The predictive nature of hardware
implementation makes these devices ideal for time-critical
and safety-critical applications. The inherent parallelism in
hardware enables complexity scaling without compromising
overall performance. Sufficient isolation between processing
units can also be guaranteed through hardware implementation.
Hybrid platforms would also allow hosting of multiple sensor
channels in parallel and with complete isolation, thus enabling
consolidation of processing at the sensor-end, reducing band-
width requirements and ECU count.

Our main contributions in this paper are:

e  An analysis of present approaches to application im-
plementation on distributed ECUs and their limita-
tions.

e A proposed framework for implementation of such
functions on hybrid FPGAs.

e  Demonstration of the proposed hybrid FPGA mapping
through a case study.

The rest of this paper is organised as follows: Section II
discusses related work, Section III discusses present ECU
architecture and its limitations, Section IV introduces the
proposed hybrid FPGA mapping, Section V presents a case
study using the proposed method, and Section VI concludes
the paper.

II. RELATED WORK

Time- and safety-critical systems such as Adaptive Cruise
Control (ACC) and Collision Avoidance (CA) have been
incorporated in vehicles for more than a decade [8], [9]. Early
implementations were simple, and software implementation on
general purpose processors was sufficient. Modern vehicles, on
the other hand, contain so many systems, that 20-100 million
lines of code run on 50-100 ECUs to provide all the necessary
control and comfort features [10]. With growing complexity,
new approaches must be explored to deal with timing criticality
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and allow function consolidation. This represents a promising
opportunity for reconfigurable hardware platforms such as
FPGA:s.

Due to their high flexibility in hardware implementation
and lower development time compared to ASICs, FPGAs have
been widely used in several time-critical applications such as
aerospace [11], [12], telecommunications [13] and medical
devices [14]. Although they have yet to achieve mass-adoption
in the automotive industry, they have been widely used in
vision-based automotive systems, and use in more fundamental
functions has been proposed in the literature. An FPGA
accelerated video-based driver assistance system is described
in [15]. Similarly, in [16], the authors describe implementation
of a radar signal processing system used for collision avoidance
in a driver assistance system. In [17], the authors propose the
use of FPGAs to achieve hardware acceleration and energy
savings in future vehicles. In [18], the authors discuss the
application of FPGA partial reconfiguration to redundancy in
vehicular networks. For low-volume deployments, FPGAs are
much cheaper than custom ASICs primarily due to lower up-
front costs, and shorted design cycle. By consolidating multiple
functions into the same chip, the cost-effectiveness of FPGAs
can be further improved. Furthermore, the ability to alter
functionality by reconfiguring the FPGA at run time, enables
new context-aware applications.

Existing automotive FPGA implementations have generally
been complete hardware systems without software support.
However, hardware is more suited for processing and sen-
sor/actuator interfacing, while high-level aspects of an appli-
cation, such as setting the driving comfort level, are more
suited to software. Hence a more sensible approach is for the
data intensive portions of an application to be implemented
in hardware, providing a high degree of determinism and
lower execution time, while the high-level decision making is
implemented in software, supporting easy customisation. We
argue that hybrid FPGAs represent the ideal platform for such
a compute paradigm.

III. STATE OF THE ART

In this section we discuss present ECU architecture and the
typical data processing model. We also discuss its limitations
and the opportunity provided by hybrid FPGAs.

A. ECU Architecture

The architecture of a typical ECU is depicted in Fig. 2
derived from [19]. ECUs follow a modular architecture to
support easy isolation and replacement. They are interfaced
with other ECUs and control modules through standard auto-
motive communication network interfaces such as CAN, LIN
or FlexRay [20]. An ECU may also have hard-wired interfaces
to sensors and actuators to observe and act upon the physical
world. An on-board processor monitors sensor inputs which
are processed in software written by the application designer,
based on the requirements of the target application. To support
real-time applications, the processor generally runs a real-
time operating system (RTOS). Processed data may be used
directly in the decision logic, to control actuators, or may be
transmitted to other ECUs over the communication network(s)
to support collective decision making.
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Fig. 3. Traditional processing on a software ECU. Multiple sensor data must
be serialised by the processor.

B. ECU Execution Model

Fig. 3 shows an ACC ECU interfaced with 4 sensors
and actuators and inputs from the driver instrument panel.
The sensors provide information regarding the current vehicle
speed, radar signal corresponding to obstructions, brake pedal
position and the accelerator position. The actuators can control
the brake and engine fuel flow as well as manage vehicle
stability. The ECU manages the acceleration/brake actuation
based on parameters set by the driver, while also assuring a
sufficient safety margin. In software, these functions imple-
mented as independent tasks, which are scheduled either at
regular intervals of time, or triggered at specific events (like
sensor data becoming available).

The ECU processor gathers sensor measurements through
the I/O interface (observe phase) under software control. Due
to the inherent sequential nature of software execution, this
data collection is done in serial although simultaneous mea-
surements are available. This can limit the rate of data acquisi-
tion and hence overall system performance. Furthermore, the
communication overhead associated with transferring sensor
data from the ECU I/O interface to the processor can hamper
achievable performance. Moreover, with increasing number
of sensors, the latency incurred by the repetitive sequential
execution of data collection could impact the timing margin
of the safety-critical function.

The processor processes collected sensor data based on
predefined control algorithms (decide phase). Complex control
algorithms can require thousands of instructions to be executed
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before arriving at a decision. This is especially challenging for
safety critical applications, where delayed execution may lead
to catastrophic events. Once a decision is made, the processor
sends appropriate control signals to the actuators (act phase)
to apply the necessary changes. This action is again serial
in nature and may be affected by the number of actuators
interfaced with the ECU.

Present ECU architectures support minimal consolidation
of multiple functions due to limited processor performance
available in an embedded environment and the lack of iso-
lation supported among these applications. Hence, in modern
vehicles, each sensor and actuator may have its own ECU,
along with a further ECU for the decision logic. As a result,
communication latency becomes an important factor. The
overall closed-loop latency is heavily dependent on the speed
of processing sensor data, the latency of sending this to the
decision logic, and the latency of the decision software. One
approach to minimising processing latency is to use application
specific integrated circuits (ASICs) to implement complex data
processing at the sensor and use a general processor only to
make the final decision.

While ASICs may improve sensor data processing capabil-
ity considerably, a number of factors prevent their adoption.
Typically a single ASIC implements a single processing func-
tion and it is not possible to customise this after deployment.
Furthermore, the cost associated with low-volume ASIC pro-
duction is considerable. Also, with future evolutions of the
vehicle, the processing logic may need to be adapted to work
with new sensors and/or deliver improved performance, which
can be expensive. Finally, beyond signal processing, there may
be a need for interfacing with the network as well as processor
interfaces. This increases complexity on the ASIC and at the
processor if it is to support multiple sensors. As a result of
these limitations, custom ASICs have not gained a foothold in
this area.

IV. HYBRID FPGAS As AN ECU PLATFORM

Field Programmable Gate Arrays (FPGA) are versatile
hardware devices, that enable flexible hardware implementa-
tion with functionality modifiable even after system deploy-
ment. They are composed of different hardware resources
including lookup tables (LUTs), flip-flops, digital signal pro-
cessing (DSP) blocks, and memory blocks, among others.
LUTs facilitate the implementation of combinational logic,
while the large number of flip-flops allows designs to be
pipelined for high performance. DSP blocks allow fixed-point
arithmetic to be fast and use minimal area. FPGAs achieve
their unique re-programmability and flexibility due to this
composition.

An FPGA designer determines a suitable microarchitecture
for their desired application and represents this using a hard-
ware description language like Verilog. Implementation tools
process this description to determine how to build it using the
basic components on the FPGA, and how to connect these
components together. The result is a bitstream, which is like a
program, but instead describes the spatial arrangement of re-
sources on the FPGA. This bitstream is loaded onto the FPGA
at startup to make it implement the desired microarchitecture.
Since the configuration memory is volatile, this bitstream can
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also be changed at runtime to allow a different application to
be implemented on the same chip.

A. Zyng Hybrid FPGAs

Traditional FPGAs are intended for high speed hardware
implementation of digital circuits. Although it is possible to
implement simple processors in FPGA logic, these do not
generally offer the performance required to implement time-
critical algorithms, even more so when layered on top of an
operating system. Hence, using a “soft” processor on the FPGA
is useful only in cases where the required performance is
minimal. Coupling an FPGA with an external processor would
create a scenario with challengers similar to the ASIC approach
described previously.

The Xilinx Zynq family is a new generation of reconfig-
urable devices, which tightly couples a dual-core ARM Cortex-
A9 processor with a reconfigurable fabric and several built-
in peripherals as shown in Fig. 4 [7]. Unlike the embedded
and soft processors in previous generation FPGAs, this ARM
processor is capable of running a fully-fledged operating
system, and has all the capabilities developers are familiar
with, without the need for additional resources to be built in
hardware. The processor communicates with on-chip memory,
peripheral blocks, SDRAM and Flash memory controllers
through ARM AMBA AXI-based interconnect. Together, these
hardened blocks constitute the Processor System (PS). The
PS fixed peripheral control block provides several standard
interfaces including 2 CAN controllers. Zynq devices also have
two 12-bit, 17 channel analog-to-digital converters (ADCs),
which enable direct interfacing of external sensors avoiding
the need for external digitisation.

The on-chip PS is attached to the Programmable Logic
(PL) through multiple ARM AMBA AXI ports, offering a high
bandwidth coupling between the two key components of the
Zynq architecture. The PS contains a built-in direct memory
access (DMA) controller interfaced to the PL through the AXI
interface, which enables high-speed data transfer between the
logic implemented in the PL and the external volatile memory.
The PL offers an advanced FPGA architecture enabling flexible
hardware implementation as previously described.
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B. Proposed System Architecture

Our proposed framework for implementing ECUs on hy-
brid FPGAs is depicted in Fig. 5. The data-intensive sensor
processing algorithms are offloaded into hardware modules
implemented in the reconfigurable fabric, and the processor
is responsible only for monitoring the processed data output
and making final decisions. To support hardware modules from
multiple vendors, their interfaces to the processing function
must follow a standard interface specification such as AXI,
while the sensor/actuator interfaces may follow a standard
protocol (like SPI, LIN) or be vendor specific. The processor
runs the observe-decide-act loop based on the processed data
from the hardware modules, considering the inputs provided by
the driver. Due to the inherent parallelism in hardware, multiple
sensors can be processed simultaneously and the architecture is
highly scalable without affecting data acquisition performance.
Since only the processed data is transferred to the processor,
the communication overhead is significantly reduced. Further-
more, due to the tight coupling between the PL and the PS,
high-speed DMA-based data transfer is possible between them.

Another advantage of this architecture is the isolation of
the individual processing nodes. Since sensor data processing
happens in individual hardware modules with sufficient local
memory support, they can be completely isolated. The system
behaviour is highly predictable and time-bound, typically to
clock-cycle resolution.

Another possible advantage of this architecture is hard-
ware monitoring for safety-critical circumstances. In situations
where immediate actions (such as immediate braking) are
required based on sensor inputs, a software based approach
may incur considerable delay in taking the necessary actions
since information has to undergo the decision making steps
in the processor. Since the processor considers non-critical
drive comfort settings during decision making, this impacts the
response time. Conversely, designers may shy away from im-
plementing highly complex and advanced algorithms for fear
of adversely affecting worst-case latency. In such scenarios, it
should be possible to apply the essential actuations as quickly
as possible. In the proposed architecture, such conditions can
be directly detected in hardware by monitoring the output
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of the processing modules and immediate actions can be
taken by a dedicated hardware module, bypassing processor
intervention.

V. CASE STUDY

To demonstrate the effectiveness of the proposed plat-
form, we present a case study which emulates a collision
avoidance system. The system detects obstructions using front,
rear, and side sensors using frequency modulated continuous
radar (FMCR) [16]. The main task of the object detection
algorithm is a 1024-point FFT calculation on the received
sensor signals followed by distance calculation based on pre-
defined equations. The ECU also receives the current vehicle
speed and brake position through the CAN interface from the
engine control ECU. The system issues warnings and, under
dangerous circumstances, directly applies the brake to avoid a
collision.

The system is implemented and validated on a Zynq
ZC702 evaluation board, which contains a Zynq XC7Z020
device and associated peripherals; the ARM processor runs
at 1GHz. To verify the effects of different implementation
schemes, the complete system is initially implemented in
software with the processor system directly interfaced with the
sensor inputs through an AXI interface. The processor operates
in polling mode, constantly monitoring the sensor inputs.
When a sufficient number of sensor samples are received, the
FFT calculation is done in software followed by the distance
measurement. Based on the computed distance, the processor
controls the actuator signals through another AXI interface.

Fig. 6 shows how adding more sensors (and the required
processing) impacts the overall sampling rate. The maximum
sampling rate supported by the Zynq ARM processor running
at 1GHz and 100 MHz I/O clock frequency is 6.1 x 10°
samples/sec. As more sensors are interfaced with the processor,
the total sampling rate remains constant, which leads to a
reduction in individual sensor channel sampling rate.

In the second scheme, hardware modules process the
sensor data (FFT) in the reconfigurable fabric (PL) and the
processor controls the actuator signals based on the data
received from these modules and some configuration settings
emulating driver inputs. The hardware modules are capable
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of continuously streaming the sensor data and have sufficient
internal memory to store the results before the processor reads
them out. Here, again, the processor is in polling mode, where
instead of checking the sensor inputs it monitors the output
from the hardware modules. The distance calculation is still
performed by the processor.

In the third scheme, data is transferred from the sensor
data processing modules to the PS using DMA and this
is indicated to the processor through an interrupt. Here the
processor is no longer busy with polling, and so can perform
other tasks while the sensor data is being processed in the
PL. In this scheme we also implement hardware monitoring in
the PL, to explore how this compares to decision making in
software. The hardware monitor also implements the distance
calculation and can directly activate the actuator control signals
if the monitored values cross a pre-defined threshold. In our
experiments, a hardware timer is implemented in the Zynq PL
for accurate performance measurement. The hardware based
implementation is capable of accepting a new sample in
every clock cycle resulting in a sampling rate of 100 x 106
samples/sec and is not affected by the number of sensor
channels, due to parallel implementation.

Fig. 7 shows the total latency of the collision avoidance
system from receiving the sensor data up to activation of
the actuator system for each of the schemes. For the pure
software implementation, the total latency increases linearly
as the number of sensor nodes increases due to the sequential
nature of data transfer as well as data processing. When 4
sensors are used, the data transfer latency is about 670 us and
processing time is about 1.6 ms. When the FFT calculation
is implemented in hardware, the total latency is considerably
reduced as the calculation is much faster in hardware than
software. A 1024-point FFT can be calculated in hardware in
11 ps. The increase in total latency for this scheme, as the
number of sensors is increased, is not as sharp as in the case
of pure software implementation, since the FFT calculation
can happen in parallel for the multiple processing nodes, and
only the communication is serial.

We then implement the proposed platform with the sensor
data processing in the hardware and DMA and interrupt based
transfer to the processor when the processed data is ready. This



TABLE 1. LATENCY COMPONENTS IN MICROSECONDS FOR DIFFERENT
IMPLEMENTATION SCHEMES USING 4 SENSORS.
Implementation Communication ~ HW  Software  Total
Software 670 0 1600 2270
HW/SW (non-DMA) 670 11 30 711
HW/SW (DMA) 286 11 30 327
HW/SW (HW monitor) 286 11 1 298

scheme further enhances system performance by reducing total
latency where the hardware data processing takes about 11 us,
data transfer to the PS about 286.7 us, and software-based
decision making about 30 pus when interfacing 4 sensors. The
overall latency is about 1/7*" that of the software implemen-
tation. Similar to the non-DMA based HW/SW implementa-
tion, the hardware processing time remains constant for this
scheme due to the parallel implementation of the processing
modules. The overall improvement with respect to the previous
implementation is due to the lower communication overhead
by virtue of the close-coupled PS-PL architecture of the hybrid
FPGA. Hybrid FPGAs hence offer an ideal mix of software
and hardware performance, and lean communication, to meet
the much more stringent latency requirements vital for time-
and safety-critical applications.

Finally, we compare the advantage of having hardware
based monitoring for emergency scenarios. Implementing the
distance calculation and the decision making algorithm based
on the control parameters and activating the actuator control
takes about 30 us to complete using the ARM processor. A
hardware monitor, which does not consider driver inputs for
calculation, can execute the same operation in less than 1 us.
This would allow emergency actuations to be applied much
more quickly. The time taken to transfer sensor data to the
PS and the hardware monitor are the same since both are
attached to the same DMA controller. Performance can be
further enhanced by adding a dedicated channel between the
data processing modules and the hardware monitor.

Table I consolidates the different latency components for
the different implementation schemes in terms of communica-
tion latency, hardware execution time and software execution
time. The communication latency is identical for the pure
software and non-DMA based implementations since the pro-
cessor needs to read 1024 samples (processed or unprocessed)
before calculating the distance. But since the execution time
is much lower for the HW/SW schemes, more samples can be
processed per second compared to the pure software imple-
mentation. The communication overhead is further mitigated
using the DMA/interrupt based method.

VI. CONCLUSION AND FUTURE WORK

In this paper we discussed the limitations of present ECU
architecture for time- and safety-critical cyber physical systems
in the automotive domain. We proposed a new implementa-
tion framework for ECUs using hybrid FPGAs that integrate
capable embedded processors with a programmable hardware
fabric. The parallel processing capability of the hardware
allows the number of sensors to scale, while the tight coupling
between software and hardware ensures low latencies. Through
a case study, we have demonstrated the advantages of such an
approach, and also discussed the possibility for direct hardware
control of actuators under emergency circumstances.

36

In the future we intend to demonstrate the capability of
the proposed approach on real automotive platforms and in a
full network context. We are also keen to explore the layering
of multiple functions that use the same sensor information on
shared hardware for further ECU consolidation.
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