
IMEC: A Memory-Efficient Convolution Algorithm
For Quantised Neural Network Accelerators

Eashan Wadhwa, Shashwat Khandelwal & Shanker Shreejith
Department of Electronic and Electrical Engineering, Trinity College Dublin

Dublin, Ireland
Email: {wadhwae, khandels, shankers}@tcd.ie

Abstract—Quantised convolution neural networks (QCNNs) on
FPGAs have shown tremendous potential for deploying deep
learning on resource constrained devices closer to the data source
or in embedded applications. An essential building block of
(Q)CNNs are the convolutional layers. FPGA implementations use
modified versions of convolution kernels to reduce the resource
overheads using variations of the sliding kernel algorithm. While
these alleviate resource consumption to a certain degree, they
still incur considerable (distributed) memory resources, requiring
the use of larger FPGA devices with sufficient on-chip memory
elements to implement deep QCNNs. In this paper, we present the
Inverse Memory Efficient Convolution (IMEC) algorithm, a novel
strategy to lower the memory consumption of convolutional layers
in QCNNs. IMEC lowers the footprint of intermediate matrix
buffers incurred within the convolutional layers and the multiply-
accumulate (MAC) operators required at each layer through a
series of data organisation and computational optimisations. We
evaluate IMEC by integrating it into the BNN-PYNQ framework
that can compile high-level QCNN representations to the FPGA
bitstream. Our results show that IMEC can optimise memory
footprint and the overall resource overhead of the convolutional
layers by ∼33% and ∼20% (LUT and FF count) respectively,
across multiple quantisation levels (1-bit to 8-bit), while main-
taining identical inference accuracy as the state-of-the-art QCNN
implementations.
Index Terms—Inference Algorithms, Field Programmable Gate
Arrays, Convolution Neural Networks

I. INTRODUCTION

Among the many flavours of neural networks (NNs)[1], Con-
volutional neural network (CNNs) have proven to be effective
in solving computer vision tasks [2]. Recent research demon-
strates that CNNs can achieve very high accuracy even for
challenging vision problems [3]. Deep CNNs have also shown
promising results in non-vision based embedded applications
like wireless networks [4], intrusion detection system for auto-
motive CAN networks [5] among many others. Integrating such
compute capabilities at or closer to the data source(s) is a key
enabler for near-real-time intelligent distributed applications
like health monitoring or autonomous transportation systems.
However, most state-of-the-art CNNs are compute intensive and
thus limit their application at the edge and/or sensing nodes
that have limited computing capabilities and energy budgets.
While computing requirements can be catered to by using cus-
tom architectures on platforms like Field Programmable Gate
Arrays (FPGAs), memory requirement to store the intermediate
results and the weights of individual layers is a critical factor in
the design decision. In many cases, the memory requirement

is much higher than the on-chip resources available on low-
cost FPGA devices, requiring the use of larger devices that
consume more static and dynamic power or offloading these
parameters to external storage at the expense of performance
cost and energy consumption.

Researchers have attempted to address these challenges by
reducing the bit-width of the parameters through quantisation
techniques [6] and/or compression schemes [7]. Quantisation
techniques rely on the use of a deterministic [6] or a prob-
abilistic formula [8] on the various parameters to reduce
computational complexity and memory requirements. Compres-
sion schemes like Deep Compression [7] attempt to reduce
memory bottlenecks through the use of multi-stage compression
pipelines. At the cost of slight reduction in accuracy, these
strategies achieve a dramatic reduction in memory footprint
and power consumption when deployed on reconfigurable hard-
ware [9][10][11]. Among many others, FINN [11] is a widely
used open-source framework for deploying data-driven quan-
tised neural network (QNN) accelerators on FPGAs. The FINN
framework can achieve high inference accuracy and throughput
at a fraction of the resources required for mapping high-
level precision implementations. For instance, a fully binarised
CNN model compiled through the FINN framework achieves a
throughput of 341 GOPs/s and an inference accuracy of 80.1%
for the CIFAR-10 dataset, while only utilising 48% of the
logic resources on a Zynq FPGA on the PYNQ-Z1 board [11].
However, over 90% of this resource usage is attributed to the
convolutional layers, and 34% of the logic resources are used
as memory elements (LUTRAMs). Optimising the memory
overhead can consequently have a large impact on the resource
requirements and energy consumption of such implementations.

In this paper, we present Inverse Memory Efficient Convolution
(IMEC), a scheme to reduce the memory elements incurred
by the convolution layer(s) within a QNN architecture through
a series of computational and data flow optimisations. Most
dataflow neural-net implementations that target FPGAs repli-
cate the convolution operator using a sliding window followed
by a matrix-vector engine to perform element-wise multiply-
accumulate (MAC) operations. Compared to traditional gen-
eralised matrix-matrix multiplication operator (GEMM) used
in CPUs and GPUs to implement convolution operation, this
approach reduces the memory required to store in-line computa-
tions and thus resource requirements in FPGA implementations.
IMEC attempts to reduce the memory incurred further by



reordering the dataflow into and out of the matrix-vector engine,
resulting in more efficient use of the small buffers incurred
in this datapath without affecting the computation itself and
thus the accuracy. IMEC can easily be integrated into end-
to-end flows like FINN as a convolution header file, allowing
designs to be further optimised for memory resources without
sacrificing performance, accuracy or throughput. We compare
IMEC against the inference designs generated by deep-learning
frameworks such as vanilla FINN [11] and LUTNET [9] and
show that IMEC can reduce the memory resources incurred by
the convolution layers by up to 33% at multiple quantisation
levels (1-bit to 8-bit) without any loss in accuracy or through-
put.

II. BACKGROUND

Like all NNs, a CNN is a series of hidden (convolutional)
layers between the input and output layers, with inputs, outputs
and weights at each layer represented as matrices. A pure
convolution layer applies a convolution operation between the
inputs and the weight matrices, while pooling layers reduces
the spatial size of the input (to this layer), by combining outputs
of clusters of neurons into one single value. A non-linear
activation function (factv) is used at the output of convolution
layers. By denoting the activation output of layer l−1 for layer
l with input x, we can formulate the general equation for the
convolution layer as:

xiN ,ow,ow,oc = factv

 iN∑
n=0

kw∑
w1=0

kw∑
w2=0

ic∑
w3=0

Kw1,w2xn,w1,w2,w3


(1)

The individual notations are described in table I.

Implementing CNNs on FPGAs at full (floating point) precision
is not efficient since the resources and primitives are not
optimised to deal with 32-bit floating-point computations, while
the on-chip memory is insufficient to store the entire weight
vectors [12]. Most approaches to FPGA implementation of
CNNs utilise some form of hardware tiling [13] and/or software
encoding [7] to operate at a reduced precision [6], [14]. We look
into these different approaches in the following subsections.

A. Quantised Neural Networks

Early experiments exploring quantisation resulted in a signifi-
cant reduction in accuracy of CNN inference, with performance
issues largely related to the inefficient training techniques [15].
Integrating Batch Normalisation within the training frame-
work addressed this issue, largely improving the accuracy of
quantised networks [16]. Mapping high-level CNN models
directly to FPGAs will incur floating-point weights/activations
and multiplication operations to implement the convolution
layers, which are expensive both in terms of resource and
energy consumption. QNNs quantise their parameters using
a transform while maintaining comparable prediction accu-
racy [6]. This representation allows the multiplication opera-
tions to be replaced by simpler operations such as bitcount,

TABLE I: Notations used in this paper

Notation Expression Definition

iN × iw × iw × ic Input Image, I

number of images
× width of image
× width of image
× channels of image

oN × ow × ow × oc Output Image, O

number of images
× width of image
× width of image
× channels of image

kw × kw Weight Kernel, K width of kernel
× width of kernel

significantly reducing the computational complexity. Recent
research explores low-level optimisations like pruning [17] and
sparsity [18] to reduce the resource footprint further.

Once trained, QNNs can be deployed in hardware on FPGAs
or ASIC to perform inference or other tasks. In case of FPGAs,
frameworks like LUTNET [9], FINN [11] and Dnnweaver [19]
can compile high-level (Q)NN representations to the target
hardware bitstream. These frameworks apply algorithmic (such
as compressing [20] or pruning [21] parameters) and/or low-
level optimisations (such as pop-count compressors [10] and
tiling [11]) during the implementation phase to utilise the
hardware more efficiently [22]. Furthermore, the user can
control the unroll factor to achieve high-throughput (multiple
PE) or low-resource (single PE) implementations of the QNN
architecture. A data-streaming structure uses a pipeline of hard-
ware blocks, each representing a layer of the CNN [9], [11],
[23] while a single computation engine approach uses systolic
arrays to operate on CNN layers as one monolithic matrix [19],
[24], [25]. In this work, we focus on the data-streaming flavour
of IMEC for high-performance CNN accelerators; however,
IMEC can also be utilised in a monolithic flow to achieve
similar benefits.

B. Notations used in this work

Table I describes the notation used in this work to denote three-
dimensional matrices. We use small and capital letters for repre-
senting line buffers and matrices respectively. Row major order
is used for all matrix calculations. Two-dimensional matrices
utilise a similar pattern eliminating the number of images and
channels information. Thus, a two-dimensional output matrix
O will be of size ow × ow instead of oN × ow × ow × oc. The
output O of a convolution layer with input I and kernel K will
have dimensions given by:

ow =
iw − kw

sw
+ 1 (2)

Here, sw represents the stride used by the convolution layer. In
the interest of simplification, we consider the case of a single
channel (i.e., oc = 1) when explaining the operation of IMEC
and im2col in the subsequent sections. Similarly, we use an 8-
bit notation for all operands while describing the algorithm in
the figures to represent integer values (within 0–255), making
it easier to comprehend the operations; the hardware design



can cater to multiple (uniform or mixed) quantisation levels.
Also, since the number of images before and after convolution
does not change, we have inferred oN = iN for all cases.
We evaluate the impact of the IMEC approach at different
quantisation levels in section V.

C. Convolution Techniques

As discussed above, the convolution operation within a layer
can be represented by the equation (1). Solving this equation
using conventional General Matrix Multiplication (GEMM)
operations incurs a computational complexity in the order of
O(owowkwkw). Directly implementing such multi-kernel and
multi-channel convolutions on an FPGA through GEMM oper-
ations will lead to high memory overheads to store intermediate
matrices and reduced computational performance [26], unless
explicitly parallelised through unrolling/vectorising the multiple
nested loops. While simple unrolling of parts of this equation
is possible, it incurs significant memory (and computational)
resource overheads and causes the performance to be memory
bound.

The im2col algorithm addresses this challenge by converting
the multi-kernel multi-channel convolutions into a collection
of GEMM operations [27]. The standard im2col method has
memory overheads of owowkwkwic , which is larger than the
dimension of the input matrix (iw× iw× ic) [28]. As the kernel
weight matrices grows, (i.e., larger K and smaller sw), the
memory requirements scale non-linearly, making it impossible
to fit into on-chip resources [29], [30]. Memory Efficient Con-
volution (MEC) algorithm [29] addresses this challenge (size of
im2col) by utilising wide buffers within Graphics Processing
Units (GPUs) to reduce the memory size from owowkwkwic
to owiwkwic. This allows the multiple processing cores on the
GPUs to perform parallel GEMM operations on overlapping
portions of these smaller matrices. However, deploying such
long buffers (of size owiwkwic) on FPGA implementations
is inefficient and incurs large resource overhead with limited
performance benefits. State-of-the-art FPGA QNN frameworks
(including LUTNET, FINN and Dnnweaver) utilise a dataflow
based approach through the use of sliding windows on the
inputs, reducing the intermediate buffer requirements when
compiling high-level QNN representations onto FPGAs. We
refer to this approach as vanilla dataflow convolver in this
paper. The algorithm first interleaves each channel of the input
matrix into the memory system, shown in fig. 1. It is then
streamed as hardware lanes to a sliding window unit (matrix
Lvanilla) which then banks them into buffers of optimised
lengths and are then fed into a matrix-vector unit to perform
MAC operations. The resulting outputs create each element
of the output matrix O. While the sliding kernel implemen-
tation allows computational performance to be optimised, the
memory overheads could be further reduced through dataflow
optimisations. The IMEC algorithm presented in this paper
aims to reduce the size of intermediate buffers incurred by
the vanilla dataflow convolver approach by decomposing the
input matrix into smaller segments allowing multiple compute

units to operate on these buffers more effectively with minimal
impact on latency.

III. IMEC ARCHITECTURE

A. Algorithm Overview

Alg. 1 is a pseudocode representation of the proposed IMEC
algorithm with Fig. 2 describing the steps involved through a
numerical example of two matrices with dimensions iw = 7,
kw = 3 and ic = 1. The algorithm operates in two stages:
for each iteration, the first stage populates the matrix buffer
LIMEC , represented by line 5 of the pseudocode, while the
subsequent stage performs the MAC operation, represented by
line 6 of the pseudocode. The operation is illustrated in the
Fig. 2 with ow = 5 for the given input dimensions (computed
using (2)). Once the first line of the buffer is filled, the window
shifts by sw (= 1 in this case) and proceeds to fill up the
subsequent line of LIMEC (shown as blue in Fig. 2). The
operations are repeated until the first line of the matrix I is fully
loaded completing the first stage of IMEC. The second stage
performs in-place column-wise element multiplication between
the loaded lines of the input matrix and the corresponding
weights, which are accumulated at LIMEC to compute the first
row of matrix O. The two stages is further repeated across the
height of I matrix ow times (iw − kw + 1 = ow times) to
complete the convolution.

B. Extending IMEC for channels

The pseudocode described in alg. 1 can be extended to enable a
multi-input (iN ) and a multi-channel (ic) convolution operation
respectively. We utilise a similar dataflow model used by the
vanilla dataflow convolution engine in FINN, with modifica-
tions to enable reduction in memory elements inferred. We refer
to this as IMEC dataflow convolver.

The input matrix I is segmented into smaller data stream
buffers of length owkw that are packed together as interleaved
channels of matrix I . The operation is then similar to an
unrolled channel-wise application of the standard IMEC algo-
rithm. The pseudocode in alg. 2 details the steps involved in
the streaming structure. Since each image matrix is processed
sequentially through this pipelined architecture, a large iN does
not create any additional constraint in this structure.

IV. IMPLEMENTING IN HARDWARE

We integrated the IMEC dataflow algorithm as a convolution
layer header file similar to the vanilla dataflow implementation

Algorithm 1 Standard IMEC Algorithm with sw = 1 and L ≡
LIMEC

1: for m ∈ 0 : ow do
2: for n ∈ 1 : kw do
3: for p ∈ 0 : kw do
4: for q ∈ 0 : ow do
5: LIMEC [(n ∗ kw) + p, q] = I[m+ n, p+ q]
6: O[m,n] += L[(n ∗ kw)+ p, q] � K[(n ∗ kw)+ p, 1]



interleaved
&

stored

I

Lvanilla K
O

Fig. 1: Vanilla dataflow convolver used by state-of-the-art neural-network accelerators for a three-channelled input matrix

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 2 0 1 1 0 0

0 0 0 1 0 2 0

0 1 1 1 1 1 0

0 2 0 1 2 0 0

0 2 2 1 1 2 0

K=1 K=2 K=3

0 2 12 1

2 2 11 2

2 1 21 0

0 2 10 1

2 0 11 0

0 1 01 0

0 0 00 0

0 0 00 0

0 0 00 0 0

1

1

1

1

0

-1

0

1

0 2 12 1

2 2 11 2

2 1 21 0

0 2 10 1

0 0 00 0

0 -1 0-1 0

0 0 00 0

0 0 00 0

0 0 00 0

4 6 453

4 6 453

2 6 442

1 5 443

2 4 433

0 2 342

7 x 7

9 x 5 9 x 1

5 x 5

I L K

O

01 0

11 1

01 -1

K

3 x 3

Fig. 2: A standard IMEC convolution example. Note that that values in input vector I and kernel K are chosen for illustration purposes only.

Algorithm 2 Algorithm for IMEC dataflow convolvers. The for loop sets are evaluated concurrently as kw SIMD lanes with ic
PE units. After each iteration there is no need to flush the buffer matrices as it is streaming in nature.

1: for iteration ∈ 0 : (iN ) do
2: for hout ∈ 0 : ow do
3: for hin ∈ 0 : kw do
4: for wout ∈ 0 : kw do . Partitioned in separate SIMD lanes
5: for win ∈ 0 : ow do
6: for ictr ∈ 0 : ic do . Unrolled as PE units
7: LIMEC [wout, (hin ∗ kw) + win, ictr] = I[hout + hin, wout + win, ictr]
8: O[hout, win] += LIMEC [(wout, hin ∗ kw) + win, ictr]�K[(hin ∗ kw) + wout, 1]

in FINN. This allows the IMEC to be seamlessly compiled
to hardware through the BNN-PYNQ workflow. We use the
framework to compile 1- and 2-bit QNNs targeting the PYNQ-
Z2 hardware and utilise the drivers included by the tool
flow. Vivado HLS 2019.2 is invoked at the back-end by the
BNN-PYNQ workflow to generate the bitstream. The dataflow
organisations and compute operations in the existing BNN-
PYNQ framework are also updated for the IMEC dataflow
convolver, as discussed below.

A. Organising the convolution window

As mentioned earlier, the first step in implementing the convo-
lution window is the initialisation of the matrix LIMEC . We
use line buffers to process each row of the matrix and utilise a
dataflow pipeline for lines 4 and 5 in alg. 2 to enable concurrent
execution of the unrolled for loops. Further concurrency is

achieved by splitting the matrix LIMEC into kw SIMD lanes
(shown in line 4) each with ic separate PE units handling the
interleaved buffers. The for loop in lines 2 and 3 of the alg. 2 are
sequentially laid out before streaming, replacing a conventional
shifting logic in case of the outer loop. This process is repeated
for every new image, indicated by the for loop in line 1.

B. Matrix-Accumulate

Once the dataflow architecture is established, the element-
wise computation is adapted based on the IMEC algorithm.
In case of multi-precision inputs, element-wise multiplication
is performed between rows of LIMEC and K, with a counter
keeping track of the row index (line 8 in alg. 2). Accumulation
occurs at the end of each row cycle. For quantised versions,
pragmas specified in the design are used by the synthesis



PE

SI
M
D

k W
 k
W

I O

oWiC
PE

LIMEC
K

Fig. 3: Operation of the matrix-accumulate unit with 2 SIMD lanes
and 4 PE units in case of IMEC in the BNN-PYNQ framework.

tools to target the resources (LUTs or DSPs) for the matrix-
accumulate operations.

In case of single-bit convolution, the multiply operation is
replaced by XOR operation while the accumulate operation is
replaced by the popcount operation (i.e., counts the number
of ones in each column buffer). The compute organisation is
shown in Fig. 3 where each row coming from LIMEC is fed
to SIMD lanes, each with multiple PEs. The PEs’ perform
element-wise XOR with a single kernel matrix K of dimensions
k2. This operation with the kernel weight matrix is repeated
across the multiple SIMD lanes and PE units. Parallel instances
of this function fills the rows of the output matrix O.

V. RESULTS

In this section, we evaluate the performance of the IMEC
algorithm and compare it to the state-of-the-art data-streaming
architectures. We use a QNN model trained through the BNN-
PYNQ framework as the starting point for our evaluation. The
model is then compiled to generate the bitstream using the
standard BNN-PYNQ compilation flow (that infers the use
of vanilla dataflow convolvers) to generate the vanilla FINN
implementation (referred to as FINN-vanilla). The same QNN
model is also compiled using the BNN-PYNQ framework and
adapted FINN libraries that infers the IMEC headers for the
convolution layer and optimises the IMEC dataflow convolver
to generate the FINN-IMEC implementation. We evaluate the
inference accuracy using the CIFAR-10 dataset on the PYNQ-
Z2 platform; the IMEC-based implementation provided an
identical inference accuracy of 80.1% as the FINN-vanilla
implementation, demonstrating that an IMEC integration does
not incur penalties in inference accuracy.

Next, we compare the resource savings that are achieved in case
of a full CNV [31] model compiled through the FINN flow
inferring IMEC dataflow convolver against the vanilla dataflow
convolver (referred to as FINN (IMEC) and FINN (vanilla)
respectively in the table(s)). Since IMEC aims at reducing the
memory elements inferred, we focus on the LUT and LUTRAM
consumption at each convolutional layer in the CNV model,
which is extracted and plotted in Fig. 4. LUTRAMs are LUTs
that are used as distributed storage elements (distributed RAM)
by the design, with each 6-input LUT on the Xilinx 7-series
device capable of acting as a configurable 64 × 1-bit memory.
The x-axis of Fig. 4 corresponds to the different layers of
the network, while the y-axis maps the LUT count. It can be
observed from the chart that IMEC dataflow convolver achieves
significant reduction in LUTRAM usage across layers 1 and 2

1 2 3 4 5
0

500

1000

1500

2000

2500
2339

1873

945

1874

795

129 64 0 0 0

1817

1414

743

1571

550

87 48 0 0 0

Vanilla-LUT
Vanilla-LUTRAM
IMEC-LUT
IMEC-LUTRAM

Layers

R
es

ou
rc

e 
C

ou
nt

Fig. 4: A resource comparison between the convolution layers of a
1-bit quantised CNV model (FINN flow) implemented by using the
vanilla dataflow convolver and IMEC dataflow convolver integrated
into the FINN framework

of the model, with the higher order layers inferring no RAM
elements. However, in the higher order layers, IMEC dataflow
convolver is still able to reduce the number of LUTs inferred
by a significant margin (> 20% across all three layers).

Table II captures the detailed resource consumption of the
best and worst layers (in terms of LUTRAM/LUT resource
reduction) across the different convolutional layers within the
CNV model. The worst case scenario refers to the cases where
IMEC dataflow convolver achieved zero or worse resource
reduction over the vanilla dataflow convolver. Of the three con-
volutional layers with 0 LUTRAM reduction (seen in Fig. 4),
layer-4 sees the smallest benefit in using IMEC convolver,
with 16.7% reduction in LUTs and 0.7% increase in flip-flops
(FFs) over a vanilla convolver-based implementation of this
layer. In the best case (layer-1), the IMEC dataflow approach
achieves nearly 20% reduction in the LUT count at the layer
and 0.5% reduction in FF count, on top of the reduction in
memory elements (LUTRAMs). We observe a 32.6% reduction
in LUTRAMs inferred by layer-1 using the IMEC dataflow due
to the optimisation of the intermediate buffers.

It is to be noted that both implementations use the same
configuration for the sliding window and matrix-accumulate
units of a convolution layer to ensure that other parts of the
architecture remains the same, and use the same parameter
settings: iw = 7, ow = 5, kw = 3, sw = 1 and ic = 2.
Also, in our benchmarks to generate HLS kernels, we used
the RAM_S2P_LUTRAM pragma for memory operations and
used the Mul_LUT pragma to perform MAC operations, in
both implementations to ensure a fair comparison between the
convolution approaches.

To isolate and quantify the memory optimisation that can
be achieved within the convolutional layer, we implement a
standalone 1-bit single-channel convolutional layer with the
QCNN parameters iw = 7, ow = 5, kw = 3, sw = 1 and
ic = 1, both with the FINN-vanilla dataflow convolver and
the FINN-IMEC dataflow convolver. This evaluation would
enable the implementation tools to minimise optimisations
driven by other layers of the network and should thus provide



TABLE II: Worst (layer-4) and best (layer-1) cases resource consumption breakup of single-bit convolution layers for the CNV model shown
in Fig. 4

Accelerator Resource Utilisation - Layer 4 Resource Utilisation - Layer 1

LUTs FFs BRAMs/DSPs LUTRAMs LUTs FFs BRAMs/DSPs LUTRAMs

FINN (vanilla) 1874 887 0/0 0 2339 1189 0/2 129
FINN (IMEC) 1517 894 0/0 0 1817 1181 0/2 87

% savings +19.7% -0.7% -/- - 22.3% +0.5% -/- +32.6%

TABLE III: Implementation and Performance Summary of FPGA-based Accelerators.

Accelerator Framework Model Platform Frequency
(MHz)

Resource consumption Resource saving v/s corr. FINN Power
(Watt)

.
LUTs LUTRAMs FFs DSPs LUTs LUTRAMs FFs DSPs

LUTNET [9] Tiled-LUTNET CNV Kintex
XCKU115 200 106,776 3,786 216,513 184 - - - - 6

FINN (1-bit) [11] BNN-PYNQ CNV Zynq
XC7Z020 200 29,635 2,438 42,053 24 1.0 1.0 1.0 1.0 1.793

This Work (1-bit) BNN-PYNQ CNV Zynq
XC7Z020 200 23,744 2,322 38,110 24 0.8 0.95 0.91 1.0 1.764

FINN (2-bit) [11] BNN-PYNQ CNV Zynq
XC7Z020 200 40,022 7,598 51,321 32 1.0 1.0 1.0 1.0 1.863

This Work (2-bit) BNN-PYNQ CNV Zynq
XC7Z020 200 35,001 7,273 43,738 32 0.87 0.96 0.85 1.0 1.828

the maximum achievable benefit on an FPGA device with 6-
input LUT architecture. We implement the convolutional layer
at multiple quantisation levels from 1-bit to 8-bit, capturing the
LUTRAM utilisation in each case. Fig. 5 shows the inferred
LUTRAM in case of the two implementations of the convo-
lutional layer, with the quantisation (bit) levels on the x-axis
and the number of LUTRAMs inferred on the y-axis. At each
quantisation level, the IMEC-based implementation achieves
close to 33.3% reduction in the number of LUTRAMs inferred,
compared to the vanilla dataflow convolver. Thus, we can infer
that IMEC convolver will offer significant LUTRAM reduction
over the vanilla dataflow convolver at any quantisation level,
which can be particularly important at higher quanisation level
implementations of QCNNs on constrained FPGAs.

Finally, we also compare the overall FPGA utilisation of the
entire QCNN network (with IMEC dataflow convolver) and the
power consumption estimated by the Xilinx Power Estimator
against other state-of-the-art FPGA NN accelerators, results

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Vanilla IMEC

Bit Quantisation

LU
T

R
A

M
 in

fe
rr

ed

Fig. 5: Number of LUTRAMs incurred by the IMEC and Vanilla
single-channel kernels across multiple quantisation levels (x axis) for
the same convolutional layer design with parameters iw = 7, ow = 5,
kw = 3, sw = 1 and ic = 1.

of which are shown in table III. As seen in our evaluation
on standalone convolutional layer, we can observe that the
IMEC-based convolver achieves significant resource savings
over the equivalent vanilla FINN implementation at both 1-
bit and 2-bit precision, while achieving the same maximum
operating frequency, throughput and inference accuracy. While
the LUTRAMs inferred by the convolutional layers have re-
duced by over 30% across the overall network, the end-to-end
datapath of the network incurs additional distributed storage
elements during the implementation flow, thus restricting the
overall LUTRAM reduction achieved by IMEC to 5% in
both 1- and 2-bit implementations. However, the IMEC-based
implementation incurs lower overall LUTs (20%, 13%) and
FFs (9%, 15%) at both precision. Furthermore, the IMEC
dataflow implementation is nearly 9% more energy efficient
(tool estimate for all cases) than the vanilla dataflow convolver
in the FINN implementation at both 1-bit and 2-bit precision
levels at the same operating frequency of 200 MHz, making
IMEC convolver a more resource and energy efficient choice
for implementing QCNNs on constrained FPGA devices.

VI. CONCLUSION

In this paper, we presented the IMEC algorithm, a novel
approach for optimising the memory resource utilisation of
the convolution layers in CNNs. IMEC optimises the use of
memory buffers by combining it with a re-organised data flow
to lower the memory requirement and latency in streaming
accelerators. The IMEC algorithm can be easily integrated
into existing FPGA-based compilation frameworks – in this
paper, we explored integration into the BNN-PYNQ flow as a
header file from a trained model. Our results show that IMEC
can enable a significant reduction in resource consumption
within the convolution layers (at most 33% reduction in inferred
distributed memory elements), and at the entire network with
over 10% reduction in both LUTs and FFs at both 1-bit and



2-bit quantisation levels. Further, this resource optimisation
also translates to reduced estimated power consumption (∼9%),
without any loss in inference accuracy state-of-the-art imple-
mentations. In the future, we aim to further optimise IMECs
convolution algorithm by coalescing the sliding window with
the matrix multiply accumulate units and integrating it to other
end-to-end frameworks such as LUTNET [9] and Dnnweaver
[19].

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner., “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
1998.

[2] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis.,
“Deep Learning for Computer Vision: A Brief Review,” 2018, Compu-
tational Intelligence and Neuroscience .

[3] K. Lee, J. Zung, P. Li, V. Jain, and S. Seung, “Superhuman Accuracy
on the SNEMI3D Connectomics Challenge,” 2017, arXiv preprint,
1706.00120.

[4] C. Zhang, P. Patras, and H. Haddadi., “Deep learning in mobile and
wireless networking: A survey.,” 2019, IEEE Communications surveys
tutorials 21.3, 2224-2287.

[5] H. M. Song, J. Woo, and H. K. Kim., “In-vehicle Network Intrusion
Detection Using Deep Convolutional Neural Network,” 2020, Vehicular
Communications 21.

[6] S. Zhou, W. Yuxin, Z. Ni, and et al., “Dorefa-net: Training Low Bitwidth
Convolutional Neural Networks with Low Bitwidth Gradients,” 2016,
arXiv preprint, 1606.06160.

[7] S. Han, H. Mao, and W. J. Dally., “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” 2015, arXiv preprint, 1510.00149.

[8] M. Courbariaux, B. Yoshua, and D. Jean-Pierre., “Binaryconnect: Train-
ing Deep Neural Networks with Binary Weights During Propagations,”
2015, Advances in Neural Information Processing Systems.

[9] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides., “LUT-
Net: Rethinking Inference in FPGA Soft Logic,” 2019, International
Symposium on on Field-Programmable Custom Computing Machines.

[10] S. Liang, L. W. Yin Shouyi Liu Leibo, and W. Shaojun., “FP-BNN:
Binarized Neural Network on FPGA,” 2018, Neurocomputing 275,
1072-1086.

[11] Y. Umuroglu, N. J. Fraser, G. Gambardella, and et al., “FINN: A
Framework for Fast, Scalable Binarized Neural Network Inference,”
2017, International Symposium on Field-Programmable Gate Arrays.

[12] C. Zhang, L. Peng, S. Guangyu, and et al., “Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks,” 2015,
International Symposium on Field-Programmable Gate Arrays.

[13] L. Lu, X. Jiaming, H. Ruirui, and et al., “An Efficient Hardware Ac-
celerator for Sparse Convolutional Neural Networks on FPGAs,” 2019,
International Symposium on Field-Programmable Custom Computing
Machines.

[14] C. Zhu, H. Song, M. Huizi, and W. J. Dally., “Trained Ternary
Quantization,” 2016, arXiv preprint, 1612.01064.

[15] M. Courbariaux, Y. Bengio, and J.-P. David., “Training Deep Neural
Networks with Low Precision Multiplications,” 2014, arXiv preprint,
1412.7024.

[16] S. Ioffe and C. Szegedy., “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” 2015, arXiv
preprint, 1502.03167.

[17] L. Guerra, B. Zhuang, I. Reid, and T. Drummond., “Automatic Pruning
for Quantized Neural Networks,” 2020, arXiv preprint, 2002.00523.

[18] H. Yang, L. Duan, Y. Chen, and H. Li., “BSQ: Exploring Bit-Level
Sparsity for Mixed-Precision Neural Network Quantization,” 2021,
arXiv preprint, 2102.10462.

[19] H. Sharma, J. Park, E. Amaro, and et al., “Dnnweaver: From High-level
Deep Network Models to FPGA Acceleration,” 2016, The Workshop on
Cognitive Architectures.

[20] D. Caiwen, S. Liao, Y. Wang, and et. al., “CirCNN: Accelerating
and Compressing Deep Neural Networks Using Block-circulant Weight
Matrices,” 2017, International Symposium on Microarchitecture.

[21] T. Posewsky and D. Ziener., “Throughput Optimizations for FPGA-
based Deep Neural Network Inference,” 2018, Microprocessors and
Microsystems, 60.

[22] E. Wang, J. J. Davis, R. Zhao, and et. al., “Deep Neural Network
Approximation for Custom Hardware: Where We’ve Been, Where We’re
Going,” 2019, ACM Computing Surv. 52, 2, Article 40,

[23] S. I. Venieris and C.-S. Bouganis., “FpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” 2016, Interna-
tional Symposium on Field-Programmable Custom Computing Ma-
chines.

[24] K. Guo, L. Sui, J. Qiu, and et.al., “Angel-Eye: A Complete Design
Flow for Mapping CNN Onto Embedded FPGA,” pp. 35–47, 2016,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems.

[25] Y. Yu and N. K. Jha., “Spring: A Sparsity-aware Reduced-precision
Monolithic 3D CNN Accelerator Architecture for Training and Infer-
ence,” 2020, IEEE Transactions on Emerging Topics in Computing.

[26] S. Chetlur, C. Woolley, P. Vandermersch, and et. al., “CUDNN: Efficient
Primitives for Deep Learning,” 2014, arXiv preprint, 1410.0759.

[27] K. Chellapilla, S. Puri, and P. Simard., “High Performance Convolu-
tional Neural Networks for Document Processing,” 2006, International
Workshop on Frontiers in Handwriting Recognition.

[28] Y. Guan, H. Liang, N. Xu, and et al., “FP-DNN: An Automated
Framework for Mapping Deep Neural Networks Onto FPGAs with
RTL-HLS Hybrid Templates,” 2017, International Symposium on Field-
Programmable Custom Computing Machines.

[29] M. Cho and D. Brand, “MEC: Memory-efficient Convolution for Deep
Neural Network,” 2017, International Conference on Machine Learning.

[30] T. Zhao, Q. Hu, X. He, and et al., “ECBC: Efficient Convolution Via
Blocked Columnizing,” 2021, IEEE Transactions on Neural Networks
and Learning Systems.

[31] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” pp. 1–13, 2016, International Symposium on Computer
Architecture.


