
1 23

Circuits, Systems, and Signal
Processing
 
ISSN 0278-081X
 
Circuits Syst Signal Process
DOI 10.1007/s00034-016-0445-x

Fracturable DSP Block for Multi-context
Reconfigurable Architectures

Rakesh Warrier, Shanker Shreejith,
Wei Zhang, Chan Hua Vun & Suhaib
A. Fahmy



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Circuits Syst Signal Process
DOI 10.1007/s00034-016-0445-x

SHORT PAPER

Fracturable DSP Block for Multi-context
Reconfigurable Architectures

Rakesh Warrier1 · Shanker Shreejith1 · Wei Zhang2 ·
Chan Hua Vun1 · Suhaib A. Fahmy3

Received: 17 March 2016 / Revised: 17 October 2016 / Accepted: 19 October 2016
© Springer Science+Business Media New York 2016

Abstract Multi-context architectures like NATURE enable low-power applications
to leverage fast context switching for improved energy efficiency and lower area foot-
print. The NATURE architecture incorporates 16-bit reconfigurable DSP blocks for
accelerating arithmetic computations; however, their fixed precision prevents efficient
reuse in mixed-width arithmetic circuits. This paper presents an improved DSP block
architecture for NATURE, with native support for temporal folding and run-time frac-
turability. The proposed DSP block can compute multiple sub-width operations in
the same clock cycle and can dynamically switch between sub-width and full-width
operations in different cycles. The NanoMap tool for mapping circuits onto NATURE
is extended to exploit the fracturable multiplier unit incorporated in the DSP block.
We demonstrate the efficiency of the proposed dynamically fracturable DSP block

B Rakesh Warrier
rakesh3@ntu.edu.sg

Shanker Shreejith
shreejit1@ntu.edu.sg

Wei Zhang
eeweiz@ust.hk

Chan Hua Vun
achvun@ntu.edu.sg

Suhaib A. Fahmy
s.fahmy@warwick.ac.uk

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore,
Singapore

2 Department of Electronics and Computer Engineering, Hong Kong University of Science and
Technology, Sai Kung, Hong Kong

3 School of Engineering, University of Warwick, Coventry, UK

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-016-0445-x&domain=pdf


Circuits Syst Signal Process

by implementing logic-intensive and compute-intensive benchmark applications. Our
results illustrate that the fracturable DSP block can achieve a 53.7% reduction in DSP
block utilization and a 42.5% reduction in area with a 122.5% reduction in power–
delay product (P–D) without exploiting logic folding. We also observe an average
reduction of 6.43% in P–D for circuits that utilize NATURE’s temporal folding com-
pared to the existing full precision DSP block in NATURE, leading to highly compact,
energy efficient designs.

Keywords Fracturable DSP · Temporal logic folding · NATURE architecture ·
Baugh–Wooley multiplier

1 Introduction

Multi-context reconfigurable platforms like the NATURE architecture [14] aim to
extend the applicability of reconfigurable architectures by providing methods for fast
context switching with minimal resource overheads and energy penalty. NATURE
employs temporal logic folding (TLF) at a fine-grained level, with distributed nano-
RAMs that enable reconfiguration of look-up tables (LUTs) to be achieved in a few
picoseconds, much faster than commercial field-programmable gate arrays (FPGAs).
NATURE also supports reconfiguration of coarse-grained DSP blocks [11] and block
RAMs (BRAMs) at similar speeds,making high frequency context switches feasible to
improve area utilization and energy efficiency. The custom mapping tool, NanoMap
[15], maps a circuit netlist to the architecture and generates the context switching
controls automatically for each occupied logic element (LUTs, DSPs, and others),
which together describe the circuit.

Register-transfer level (RTL) code can utilize mixed precision and custom datapath
widths to achieve required accuracy and performance, but in NATURE these are sel-
dom translated efficiently to hard blocks like DSPs. The fixed precision on these hard
DSP blocks often results in sub-optimal utilization, especially in cases where the data
widths are half the input width of the DSP block. In such scenarios, the NanoMap
tool infers a complete DSP block but does not utilize the upper bits for computa-
tion, resulting in resource and power wastage. Variable precision DSP blocks have
been described in academic research [8,9] and implemented by commercial vendors
(Altera) [1]. These support different computational precision and reuse of resources.
The DSP blocks in Xilinx FPGAs offer dynamic programmability that allows their
function to be altered at run time using special control inputs, improving their flexi-
bility, as shown in [3] where they are used in the execution unit of a soft processor.
However, the compute precision of these DSP blocks cannot be altered across clock
cycles, preventing them from being reused efficiently in a mixed precision circuit
implementations, specifically on multi-context architectures that support TLF. Fur-
ther, commercial FPGA tools do not currently automatically reuse DSP blocks in this
manner, resulting in inefficient implementation in terms of area and power consump-
tion [10].

In this paper, we present an enhanced DSP block architecture for NATURE that
natively supports run-time precision selection and TLF. The proposed DSP block

Author's personal copy



Circuits Syst Signal Process

can switch between sub-width operation mode (2 independent 8 × 8 operations
simultaneously), full-width operation mode, or wider multiplication mode (32 × 32,
24 × 16, and 24 × 8 on a single DSP block) at runtime. The NanoMap tool is also
extended to efficiently map multi-precision arithmetic operations on to the NATURE
architecture that incorporates the proposed DSP block. Compared to a fixed preci-
sion reconfigurable DSP block, our experiments show that the proposed architecture
results in a 63.5 and 76.2% reduction in power consumption and area while handling
two half-width operations (in the same clock cycle) and 75 and 68.2% reduction in
DSP block utilization with up to 122.5% reduction in power–delay product (P–D)
across different benchmark circuits. We also observe that combining TLF with vari-
able precision in DSP block computation provides significant advantage in (effective)
area (1.24×), compared to a high-end Altera Stratix V device that incorporates vari-
able precision DSP blocks. The proposed DSP architecture uses 16-bit operands to
comply with NATURE architecture; however, the method can be extended to a 32-
bit DSP block that can simultaneously support two 16-bit operations or four 8-bit
operations.

2 Background and Related Work

NATURE is a hybrid reconfigurable architecture that can facilitate high-speed low-
overhead dynamic reconfiguration [14]. The logic block (LBs) in NATURE are
arranged in island style, connected by reconfigurable routing interconnect. High den-
sity, high speed nano-RAMs are distributed in the logic fabric to store configuration
bits. The ability to reconfigure NATURE every few clock cycles leads to the concept
of TLF. TLF improves the logic density and area utilization by folding the logic circuit
in time and maps each fold onto the same logic. Different folding levels are supported
by NATURE, achieving different area/delay characteristics and offers significant flex-
ibility in exploring area–delay trade-offs.

For efficient mapping of applications onto NATURE, a design automation tool
called NanoMap is used. It performs implementation of a circuit from RTL level to
physical level through multiple steps: logic mapping, temporal clustering, temporal
placement and routing, to generate configuration bits. After identifying the best fold-
ing level based on the design constraints and optimization objectives, LUT and DSP
operations are scheduled using force-directed scheduling (FDS). Temporal clustering
of LUTs and DSP blocks is performed to simplify the placement and routing, which is
achieved using a customized version of the Versatile Place and Route (VPR) [2] tool
that supports temporal folding. Direct links are incorporated in VPR to cascade DSP
blocks and to route short-distance nets between LBs.

The current fixed precision DSP block [11] incorporated in the NATURE archi-
tecture is composed of two 16-bit pre-adders, a 16-bit Wallace tree multiplier and a
32-bit ALU unit that can perform addition, subtraction, 16-bit barrel shifting and bit-
wise logical operations. The sub-modules form each stage of the three-stage pipeline
in the DSP block, which also incorporates multiple output registers to store the final
result. Multiplexers within the datapath of the DSP block direct data from/to various
stages, allowing numerous combinations of operations to be implemented on a DSP

Author's personal copy



Circuits Syst Signal Process

block. The DSP block operates with a fixed word length of 16-bits, which results in
large wastage when the operands are half-width (8-bytes) or lower.

Modern commercial FPGAs use highly advancedDSP blocks for accelerating com-
plex computations. Xilinx’s 7-series FPGAs use the DSP48E1 architecture [12] that
features an asymmetricmultiplier design (25×18)with fixed precision and amaximum
operating frequency of 741MHz. DSP48E1 blocks also offer dynamic programma-
bility that allows their function to be altered at run time using control inputs, allowing
them to be used flexibly. An example case is shown in [3], where a DSP48E1 block
forms the execution unit of a highly efficient soft processor. Altera’s variable preci-
sion DSP block can perform multiple sub-width operations concurrently (up to three
9 × 9) with a design-time decision, while also featuring extensions like coefficient
memory for efficient implementation of filters [1]. The literature also describes DSP
block architectures from academic research with feature enhancements for supporting
multi-input addition and varied bit-width multiplications [8,9]. However, these DSP
block architectures are primarily designed for single-context FPGAs and hence do not
support logic folding.

3 Architecture of Fracturable DSP Block

3.1 Fracturable Baugh–Wooley (BW) Multiplier with HPM Reduction Tree

Parallelmultipliers like theBWmultiplier operate in three steps: generation of primary
partial products, compression, and final addition. To compute two sub-multiplications
in parallel, we introduce a fracturing mechanism at the primary Partial Product (PP)
generation stage of a 16-bit multiplier, as shown in Fig. 1. The fracturing mechanism
uses configurable gates in addition to regular AND/NAND gates that are used in
generic PP generation, with dynamic configuration bits that allow their functionality
to be altered on a per-cycle basis. The multiplier unit uses two configuration bits,
mode and gate, to determine the mode of operation. An alternative scheme would
be to use independent and isolated PP generation stages for the full bit-width and
half bit-width cases; however, this requires duplication of the PP stages and wide
multiplexers for selecting the active datapath, resulting in larger area overhead, higher
power consumption, and lower operating speeds. In the proposed scheme, a pipeline
stage is introducedwithin the architecture to reduce the critical path, resulting in higher
operating frequency over the existingDSP block in NATURE. The pre-adder andALU
stages of the DSP block have been enhanced to support extended fractured operations
like pre-add multiply or multiply-accumulate.

As mentioned, the proposed architecture makes use of other building blocks to gen-
erate the PPs. These are the configurable AND/NAND, Gated-AND, Gated-NAND,
Mode-based-Gated-NAND (Gated-Mode-NAND), XOR (Mode-Invert), Mode-OR-
AND (Mode-AND), and 1-bit multiplexers (Mode-Mux). For the lower 16-bit partial
products, the structure resembles an 8× 8 multiplier, with additional rows above and
below the regular 8-bit PPs. The partial products are generated by regular AND gates
and configurable AND/NAND gates, while the Gated-AND/NAND gates are selec-
tively disabled to allow sub-computations to be performed in isolation. The upper

Author's personal copy



Circuits Syst Signal Process

Xin

Yin

PP

Pout

Lower-8Upper-8

Lower-16Upper-16

Legend:

AND:PP

AND/NAND:PP/PP

Gated-AND:PP/‘0’

Gated-NAND:PP/‘0’

Gated-Mode-NAND:(PP/M)G

Mode-AND: PP/M

Final-Adder:FA

Mode-Invert:FA/FA

Mode-Mux:FA/PP

PP

PP

MODE
PP/PP

PP

GATE
PP/‘0’

PP

GATE
PP/‘0’

PP

MODE
GATE

(PP/M)G

Fig. 1 Proposed fracturing mechanism of the 16-bit BW multiplier

16-bit PPs also mirror a similar structure operating on the upper 8 × 8 partial prod-
ucts. Here, the partial products are generated by Gated-AND, Gated-NAND, while
the Gated-Mode-NAND generates logic ‘1’ to enable proper combination within the
reduction tree. By generating the PP in this manner, we allow the logarithmic reduc-
tion tree to be reused for all modes of operation, without requiring any changes to its
internal structure, reducing the area overhead incurred. The output of reduction tree
is pipelined (single-stage) to limit the critical path within the multiplier.

The configuration bits mode and gate determine the three operating modes of the
multiplier at any given time. These can be automatically generated by our tool flow
(see 3.5) for altering mode at run time. We describe the operation of the circuit in the
different modes below.

3.1.1 Regular 16-Bit Mode

This mode is selected when gate is set to ‘1’ and mode is set to ‘0’. In this case, our
circuit falls back to the regular 16 × 16 partial product tree, whereby the Gated-
AND/NAND and Mode-based-Gated-AND/NAND compute regular AND/NAND
functions respectively, resulting in normal 16 × 16 partial products, which are then
fed to the reduction tree and further to the final adder to compute the product.

3.1.2 Dual 8 × 8 Mode

This mode is selected when gate is set to ‘1’ andmode is set to ‘1’. In this scenario, the
lower 8-bits of the inputs X and Y are taken as the input to the lower-16 section while
the upper 8-bits of inputs X andY are taken as inputs to the upper-16 section.With this
configuration chosen, the Gated-AND/NAND computes regular AND/NAND oper-
ation, while the Gated-Mode-NAND gates are forced to value ‘1’. The configurable
AND/NANDoperates as aNANDgate, while theMode-ANDchooses the value of ‘1’.
This generates two isolated sections of partial products which are then compressed
using the HPM reduction tree. The Gated-Mode-NAND gates ensure that the sign
bits of the lower-16 bits are unaffected (and contained) during HPM reduction, while
allowing the compression of the upper-16 bits in isolation. At the final adder stage,

Author's personal copy



Circuits Syst Signal Process

the multiplexers (Mode-Mux) choose the lower bit of the upper-16 reduced PP, while
the Mode-Invert preserves the sign bit of the lower-16 result.

3.1.3 Single 8 × 8Mode

This mode is selected when gate is set to ‘0’ and mode is set to ‘1’. In this scenario,
the lower 8-bits of inputs X and Y are taken as the input to the lower-16 section while
the upper 8-bits of inputs X and Y are ignored. With this configuration chosen, the
Gated-AND/NANDare completely gated in addition to theGated-Mode-NANDgates,
producing an output value ‘0’. This gating allows a significant power reduction when
the multiplication is limited to a single 8-bit scope, compared to a regular 16-bit struc-
ture operating on 8 bits. As with the fractured mode, the configurable AND/NAND
operates as a NAND gate, while the Mode-AND chooses the value of ‘1’.

Thus by controlling the mode and gate pins at run time, the multiplier enables
computation of one 16× 16 or two 8× 8 in full mode, or a single 8× 8 multiplication
with reduced power consumption.

3.2 DSP Block Architecture

To make effective use of our fracturable computational path, we have also defined an
enhanced DSP block architecture, based on the architecture in [11]. Figure 2 shows the
basic block diagram of our enhanced DSP block. From the previous DSP block design,
themodified DSP block contains gate, andmode pins to reconfigure the BWmultiplier
in different modes. The selection signals of these control pins are controlled by the
multiple configuration bits stored in the associated configuration memory. Also, the
interleaved multiplexers allow flexibility to realize different operations to be imple-
mented using this basic structure. The two pre-adders (16-bit each) and the ALU
(36-bit) have also been fractured using the same gate and mode inputs, allowing four
8-bit add/sub or two 16-bit ALU operations to be performed in addition to sub-width
multiplication(s). The modified DSP block can now compute a wider range of compu-
tations on 8-bit operands than a standard non-fracturableDSPblock, and this flexibility
will be explored by our enhanced NanoMap tool.

3.3 Supporting Wider Multiplications

Using TLF, a 32 × 32 multiplication can be mapped using a single proposed DSP
block in eight clock cycles. The 32-bit operands are separated and fed as the 16
least significant bits followed by the 16 most significant bits over multiple cycles.
The partially computed results are stored in the intermediate registers for successive
computations. The ALU perform shift and add operations on multiplier output to
generate accurate results. Figure 3 shows a 32-bit multiplier using only one DSP
block using logic folding. Using a similar approach, the proposed DSP block can
also implement 24 × 16 and 24 × 8 multiplications by reconfiguring one DSP block.
Moreover, this approach of realizing wider multiplication takes one clock cycle less
than Karatsuba–Ofman algorithm [7], while utilizing the DSP block more efficiently.

Author's personal copy



Circuits Syst Signal Process

±
±

±
±

×
×

±
± �

C

A

B

D

Ein Cin

P

Eout

Cout

Pre-add/sub

Pre-add/sub

Multiplier

ALU

16

16

16

16

32

32

1

32 1

Register

Fig. 2 A 16-bit enhanced DSP architecture

X

+

+

+

cycle 1

cycle 2

cycle 3

cycle 4

B[15:0]

B[15:0]

B[31:16]

B[31:16]

cycle 4

cycle 3

cycle 2

cycle 1 A[15:0]

A[15:0]

A[31:16]

A[31:16]

Output

1- No shift
2- Shift 16
3- No shift

E[15:0]
E[31:16]
E[63:32]

Operation mode
4- Shift 16

Fig. 3 32-Bit multiplication using logic folding

While folding can be explored for low-power designs,widermultipliers (like 32×32 or
higher) in high performance designs can be implemented using the Karatsuba–Ofman
algorithm by chaining DSP blocks.

3.4 DSP Interconnect

NATURE uses an island style architecture with each column implementing a single
type of basic block. DSP blocks are placed along DSP columns, with direct links
to top and bottom neighbours for cascading and chaining. The I/O ports of the DSP
blocks are equally distributed on the left and right sides of the block, while the carry

Author's personal copy



Circuits Syst Signal Process

ports are located on the top and bottom sides. The I/O ports interface to the generic
routing structure (via the switch matrix) to provide connectivity between DSP and
SMB blocks. Including the input switch matrix, the proposed DSP block occupies an
area equivalent to six SMB tiles.

3.5 Enhanced NanoMap

In Sect. 2, we introduced the NanoMap design automation tool flow that maps appli-
cations onto the NATURE architecture, including fixed precision DSP blocks. Here,
the logic mapping step assigns arithmetic operations with operand bit-width greater
than or equal to 8-bits to DSP blocks, while conditional operations and lower-width
arithmetic operations are mapped onto LUTs. Multiple DSP blocks are automatically
invoked when the operand bit-widths are wider than 16-bits. Once all nodes in the cir-
cuit are mapped using the library modules (LUTs, DSP blocks or Block Memories),
FDS schedules the LUT and DSP operations into the best clock cycle. Further, the
LUTs and FFs are packed into CLBs using a constructive algorithm. Our tool flow
enhances this packing algorithm to reduce DSP block utilization by exploiting the
fracturable nature of the proposed DSP block.

After mapping themathematical operations to individual DSP blocks, the algorithm
iteratively searches for operations that are scheduled in the same clock cycles. If any
two DSP blocks perform sub-width operations (for example multiple 8 × 8 multipli-
cation) in the same clock cycle, the algorithm groups them onto a single physical DSP
block. Furthermore, theDSP operations scheduled in different cycles are also clustered
together considering the connectivity and time span of the scheduled computation (or
lifetime of the DSP). Non-overlapping DSP operations with higher interconnectivity
are clustered together for sharing in different cycles. This two-step approach allows a
single DSP block to be reconfigured across cycles to implement sub-width (one 8× 8
or two 8 × 8) full-width (one 16 × 16), or wider (24 × 16 or 32 × 32) operations,
reducing the DSP block utilization, area, and power consumption. The placement and
routing has also been modified to accommodate the fracturable nature of the primary
inputs/outputs of the DSP blocks.

4 Area/Power Overhead of Fracturable DSP Block and Performance
Benefits

Toevaluate the area/power overhead and the reduction in frequencydue to the increased
logic in the multiplier unit, we synthesized our proposed DSP block unit using Synop-
sys Design Compiler targeting the TSMC 65nm cell library. For comparison, we also
synthesized the existing NATURE DSP block which uses a standard BW multiplier,
with the same target library. The results are shown in Table 1. The Table compares
the resource consumption of the proposed DSP architecture against the existing (non-
fracturable) DSP block in NATURE [11], which uses a wallace treemultiplier, with a
maximum operating frequency of 333MHz. It can be observed that the proposed DSP
architecture, based on the BW multiplier with an HPM reduction tree, incorporates
multiple operating modes (as discussed in Sect. 3) and deep pipelining in the final

Author's personal copy



Circuits Syst Signal Process

Table 1 Power, area and frequency of the proposed DSP block

Design Cell area (µm2) Dynamic power (µW) FMax(MHz)

One 8 × 8 Two 8 × 8 Full 16 × 16

Non-fract. DSP 12938 934 1864 1160 333

Fract. DSP 14683 955 1140 1191 400

adder stage, thus attaining a higher operating frequency of 400MHz with a 13.4%
increase in cell area.

We also estimate the power consumption of the proposed DSP block using the Syn-
opsys primetime tool, the results ofwhich are also shown inTable 1.Thepower (switch-
ing power) measured using Synopsys primetime compiler consists of Power_total =
Net_Switching_Power+Cell_Internal_Power+Cell_Leakage_Power, where the net
switching power is the power estimated using the switching activity values generated
using a VCD dump file, the cell internal and leakage power are the values correspond-
ing to each standard cell of the library module that is being used. We observe that with
fracturing, our architecture results in a 38.3% reduction in power and 43.8% reduction
in area when two 8-bit multiplications are scheduled in parallel, which would utilize
two 16-bit multipliers in the NATURE architecture. For single 8-bit and full precision
modes, operating at 400 MHz results in a slight increase in power consumption of 2
and 2.67%, respectively, over the current NATURE DSP block that runs at 333 MHz.
At 333 MHz, we observed that the fracturable design consumes 15% less power for
both single 8-bit and full precision operations, compared to the existing DSP block.
Thus we see a clear advantage in terms of performance and power consumption for the
proposed DSP block architecture in mixed precision digital circuits, which are com-
monly used in many applications like audio, vision systems, and others. We further
quantify these advantages in the case of actual circuits in the section below.

5 Performance Results and Discussion

For our experiments, we have used generic RTL/netlists of circuits including
Discrete CosineWave Transform (DCT), Auto-Regression Filter (ARF), Application-
Specific Programmable Processor (ASSP4) [4], Greatest Common Divisor (GCD),
Differential-Equation Solver (Paulin) [6], Wavelet Transform, and Finite Impulse
Response Filters (FIR1 and FIR2). In addition to these generic circuits, we have
also evaluated the proposed DSP using complex functions such as the Elliptical Wave
Filter (EWF), HAL, Smooth Triangle, HornerBezier, Motion Vector, and Matrix Mul-
tiplication, starting from their RTL/netlist description. We set the input precision to
8-bit for all evaluations.

In the experiments, we explore two folding levels (0 and 1) and evaluate the
area–delay (A–D) and power–delay (P–D) trade-offs (total runtime power) achieved
using the proposed fracturable DSP block compared against the existing NATURE
DSP block. We also compare the results of folding level 0, which can be consid-

Author's personal copy



Circuits Syst Signal Process

Ta
bl
e
2

R
es
ou

rc
e
co
m
pa
ri
so
n
of

be
nc
hm

ar
k
ci
rc
ui
ts
im

pl
em

en
te
d
on

N
A
T
U
R
E
(w

ith
fr
ac
tu
ra
bl
e
D
SP

bl
oc
k
an
d
w
ith

no
n-
fr
ac
tu
ra
bl
e
D
SP

bl
oc
k)

fo
r
fo
ld
in
g
le
ve
l-
0
an
d
an

A
lte
ra

St
ra
tix

V
5S

G
SM

D
4E

1H
29
C
1

B
en
ch
m
ar
k
(n
o
of

m
ul
t/m

ac
,

ad
d/
su
b
op

s)
E
xi
st
in
g
D
SP

W
ith

fr
ac
t.
D
SP

%
R
ed
uc
tio

n
A

×
D

P
×

D
A
lte
ra

St
ra
tix

V
A
E
ff

D
SP

s
M
in
.p

er
io
d

D
SP

s
L
U
T
s

A
E
ff

M
in
.p

er
io
d

D
SP

A
re
a

G
ai
n

G
ai
n

D
SP

L
U
T
s

A
E
ff

G
ai
n

D
C
T
(1
3,
19

)
32

4.
12

ns
13

16
16

80
3.
22

ns
59

.3
8

50
.7
9

2.
60

×
2.
49

×
12

14
6

17
07

.4
1.
02

×
A
R
F
(1
6,
12

)
28

3.
79

ns
10

0
12

80
2.
92

ns
64

.2
9

57
.8
6

3.
04

×
3.
08

×
12

54
16

15
.4

1.
26

×
FI
R
1
(1
1,
10

)
21

3.
57

ns
8

0
10

24
2.
94

ns
61

.9
0

55
.0
5

2.
70

×
2.
78

×
11

12
6

15
57

.3
1.
52

×
FI
R
2
(8
,1
5)

23
3.
61

ns
8

0
10

24
2.
88

ns
65

.2
2

58
.9
6

3.
05

×
3.
21

×
8

12
2

11
62

.9
1.
13

×
W
av
el
et
(1
0,
14

)
24

4.
09

ns
12

14
4

16
80

3.
37

ns
50

.0
0

31
.5
0

1.
77

×
1.
48

×
10

18
4

14
85

.2
0.
88

×
A
SP

P4
(3
,4
)

7
5.
08

ns
6

22
4

99
2

4.
35

ns
14

.2
9

-0
.4
4

1.
16

×
1.
18

×
3

14
8

53
8.
4

0.
54

×
E
W
F
(8
,2
6)

34
3.
75

ns
14

0
17

92
3.
27

ns
58

.8
2

51
.4
1

2.
36

×
2.
58

×
8

21
0

12
50

.9
0.
70

×
H
A
L
(6
,4
)

10
6.
06

ns
4

40
55

2
5.
09

ns
60

.0
0

43
.9
6

2.
12

×
1.
62

×
6

46
82

6.
7

1.
50

×
Pa
ul
in

(2
,2
)

4
4.
68

ns
3

14
0

52
4

3.
79

ns
25

.0
0

4.
17

1.
29

×
1.
26

×
1

84
34

4.
3

0.
65

×
H
or
ne
rB

ez
ie
r
(8
,3
)

11
3.
74

ns
4

12
52

4
3.
32

ns
63

.6
4

54
.1
2

2.
46

×
2.
00

×
8

50
10

90
.9

2.
08

×
M
ot
io
nV

ec
to
r
(1
2,
12

)
24

3.
51

ns
6

16
78

4
2.
83

ns
75

.0
0

68
.2
1

3.
90

×
3.
06

×
12

14
6

17
07

.4
2.
17

×
M
at
ri
xM

ul
t(
48

,1
2)

60
4.
72

ns
32

96
41

92
3.
46

ns
46

.6
7

34
.3
1

2.
08

×
2.
18

×
48

48
2

67
29

.5
1.
60

×
Sm

oo
th

T
ri
an
gl
e
(1
7,
20

)
37

4.
13

ns
17

48
22

24
3.
25

ns
54

.0
5

42
.9
8

2.
23

×
2.
01

×
17

19
4

24
05

.9
1.
08

×

Author's personal copy



Circuits Syst Signal Process

ered equivalent to a single-context FPGA, against the results on an Altera Stratix
V (5SGSMD4E1H29C1) device that features 6-input fracturable LUTs and variable
precision DSPs, as shown in Table 2. To account for the difference in platforms,
we compute the effective area utilized by the implementation (in terms of equiv-
alent LUTs) using the relation AEff = LUTMax/DSPMax ∗ DSP utilization +
LUT utilization [13]. Also, the number of multiply/MAC and add/sub operations in
each benchmark is shown (in brackets), which helps determine the reduction in DSP
blocks achieved by exploiting their fracturable nature (onStratixV and on the proposed
DSP block in NATURE).

It can be observed from Table 2 that the proposed DSP block achieves a signifi-
cant reduction in DSP utilization compared to the existing fixed precision DSP block
architecture in NATURE. This is because the two sub-width mult/MAC or add/sub
operations that are scheduled in the same clock cycle, can be merged into a single
(proposed) DSP block by altering the mode and gate configuration bits, while this
requires two DSP instances with the existing architecture. Also, Table 2 shows that
the % reduction in DSP block utilization is significant for the benchmark circuits with
acyclic dataflow graphs (FIR1, FIR2, Motion Vector, EWF, ARF etc.), since these
circuits contain only sequences of arithmetic operations that can be scheduled to their
best folding cycles. This results in better merging of non-overlapping arithmetic nodes
onto the same fracturable DSP block(s). Finally, the ASSP4 benchmark shows neg-
ative gain in area, since the cyclic circuit contains only one arithmetic node that can
be merged, and the area penalty of the fracturable DSP block (13.4% over the exist-
ing DSP block) cannot be covered by this limited merging. An average reduction of
53.7% in DSP block utilization, 42.5% in area, and 122.5% in P–D product across
all benchmarks is achieved.

Compared to the implementation on Altera Stratix V device, which maps only
mult/MAC operations onto DSP blocks while add/sub operations are implemented
using LUTs, we observe a 24% average reduction in effective area (across all bench-
marks), despite theAltera device having superior LUTs (6-input fracturable vs. 4-input
fixed on NATURE) and DSP blocks (three 9 × 9 vs. two 8 × 8 for proposed DSP on
NATURE) architecture. It can also be observed that the Quartus tool automatically
merges sub-width operations to reduce DSP block utilization in multiple benchmarks
(DCT, ARF, PAULIN); however, our enhanced NanoMap tool flow is able to fur-
ther reduce the DSP block utilization by exploiting the fracturable Pre-add/sub and
Post-add/sub blocks in the proposed DSP block.

Table 3 shows the mapping results of the benchmark circuits on NATURE architec-
ture with the proposed DSP blocks and on NATURE with fixed precision DSP blocks
at folding level 1. In folding level 1, the logic is folded (reconfigured) at a depth of
1 LUT computation. Here, apart from combining two 8-bit multipliers scheduled in
same clock cycle to a fractured DSP block, it can be reused across clock cycles to
implement subsequent operations if there are no resource conflicts. Further, each DSP
block may vary its configuration from full 16 × 16 mode to the power-saving single
8×8 mode or a fractured dual 8×8 mode across different cycles, as determined by its
configuration bits. This flexibility allows further optimizations in resource consump-
tion, compared to folding level 0, which was discussed earlier in Table 2. For each
benchmark, we observed that the overall resource consumption was reduced in folding

Author's personal copy



Circuits Syst Signal Process

Ta
bl
e
3

R
es
ou

rc
e
co
m
pa
ri
so
n
of

be
nc
hm

ar
k
ci
rc
ui
ts
im

pl
em

en
te
d
on

N
A
T
U
R
E
(w

ith
fr
ac
tu
ra
bl
e
D
SP

bl
oc
k
an
d
w
ith

no
n-
fr
ac
tu
ra
bl
e
D
SP

bl
oc
k)

fo
rf
ol
di
ng

le
ve
l-
1
an
d
on

FD
R
2.
0

B
en
ch
m
ar
k

N
on
-f
ra
ct
ur
ab
le
D
SP

Fr
ac
tu
ra
bl
e
D
SP

A
×

D
P

×
D

FD
R
2.
0

%
R
ed
uc
tio

n
A

×
D

D
SP

s
M
in
.p

er
io
d

D
SP

s
M
in
.p

er
io
d

G
ai
n

G
ai
n

D
SP

s
M
in
.p

er
io
d

D
SP

G
ai
n

W
av
el
et

9
3.
88

ns
8

3.
14

ns
1.
23

×
1.
16

×
17

4.
28

ns
52

.9
2.
56

×
A
SP

P4
3

3.
57

ns
2

3.
68

ns
1.
16

×
1.
01

×
5

3.
88

ns
60

.0
2.
29

×
Pa
ul
in

4
3.
67

ns
3

3.
4
ns

1.
21

×
1.
08

×
4

3.
67

ns
25

1.
52

×
M
ot
io
n
V
ec
to
r

6
3.
62

ns
5

3.
01

ns
1.
27

×
1.
15

×
12

3.
81

ns
58

.3
2.
38

×
M
at
ri
xM

ul
t

23
3.
69

ns
21

3.
58

ns
1.
01

×
1.
03

×
30

3.
78

ns
30

1.
17

×
Sm

oo
th

T
ri
an
gl
e

10
3.
65

ns
9

3.
36

ns
1.
07

×
1.
02

×
22

3.
91

ns
59

2.
11

×

Author's personal copy



Circuits Syst Signal Process

level 1, with both the fixed precision DSP block based NATURE and the proposed
DSP block based NATURE. Shown in Table 3 are the six benchmarks which offer
reduced resource consumption between the two target platforms (NATUREwith fixed
precision DSP block and NATURE incorporating proposed DSP block). In the case
of the smaller benchmarks (FIR1, FIR2 and others), we observe that temporal fold-
ing introduces resource conflicts, limiting the scope of DSP reuse through fracturing.
We observe an average reduction of 17.5% in DSP block utilization across the six
benchmarks and an average A–D improvement of 1.1× for the NATURE architecture
that incorporates our proposed DSP block. We also observe a P–D product reduction
of 6.43% across the benchmark circuits over the NATURE architecture with fixed
precision DSP block.

We also compare the results of NATURE with the fracturable DSP block against
the FDR 2.0 architecture [5] that incorporates a DSP block with three pipeline stages.
Compared to the fixed precision DSP block available on the FDR architecture, the
fracturable nature of our DSP block enables the mapping tool to merge more DSP
operations on to the same DSP block. This results in improved area and power gain
over the existing FDR architecture over the set of benchmarks, as shown in Table 3.We
observe an average reduction of 47.7% in DSP block utilization across six benchmarks
and an average A–D improvement of 2.01× for the fracturable DSP incorporated
NATURE over FDR architecture. For more computationally intensive circuits, we
believe that the proposed DSP block can result in a more significant improvement
in energy efficiency without compromising system performance. Finally, it is worth
mentioning that though we have used NATURE as a platform to demonstrate the
capabilities of our fracturable DSP block, it could also be integrated into FDR 2.0 to
extract similar gains in resource and energy consumption.

6 Conclusion

In this paper we proposed a fracturable DSP block architecture for improving energy
efficiency of computations on the multi-context FPGA architecture, NATURE. The
proposed DSP block achieves this efficiency by fracturing its internal compute-path
while maintaining the capability to dynamically switch computational precision. By
utilizing this capability, our proposed DSP block can efficiently handle two inde-
pendent half-width (8 × 8) multiplications in complete isolation, perform a single
8 × 8 multiplication with lower power consumption, or operate on regular full-width
16-bit operands. Furthermore, these modes can be switched dynamically, allowing
efficient reuse of the DSP block for low-power applications. We have extended the
NanoMap tool flow to efficiently map and merge mixed precision multiplications
on the proposed DSP block. Experimental results show that mapping benchmarks
circuits onto the NATURE architecture with this proposed DSP block achieved
42.5 and 53.7% average reduction in area and DSP block utilization with 122.5%
reduction in P–D product without utilizing temporal folding (folding level 0). We
also observe improvements in energy efficiency and resource utilization when tem-
poral folding is employed, without sacrificing performance. We aim to evaluate
a 32 × 32 DSP block that can support two half-width (16-bit) or four quarter-

Author's personal copy



Circuits Syst Signal Process

width (8-bit) operations simultaneously, and extend the tool flow to support these
enhancements.

References

1. Altera Inc, Variable Precision DSP Blocks in Stratix V Devices (2013)
2. V.Betz, J.Rose,VPR,Anewpacking, placement and routing tool for FPGAResearch. inProceedings of

International Conference on Field-Programmable Logic and Applications (FPL), pp. 213–222 (1997)
3. H.Y. Cheah, F. Brosser, S.A. Fahmy, D.L. Maskell, The iDEA DSP block based soft processor for

FPGAs. ACM Trans. Reconfig. Technol. Syst. 7(3), 19:1–19:23 (2014)
4. I. Ghosh, A. Raghunathan, N.K. Jha, Hierarchical test generation and design for testability methods

for ASPPs and ASIPs. Trans. Comput. Aided Des. Integr. Circuits Syst. 18(3), 357–370 (1999)
5. T.J. Lin, W. Zhang, N.K. Jha, FDR 2.0: a low-power dynamically reconfigurable architecture and its

FinFET implementation. IEEE Trans. Very Large Scale Integr. Syst. 23(10), 1987–2000 (2015)
6. L. Lingappan, S. Ravi, N.K. Jha, Satisfiability-based test generation for nonseparable RTL controller-

datapath circuits. Trans. Comput. Aided Des. Integr. Circuits Syst. 25(3), 544–557 (2006)
7. M. Machhout, M. Zeghid, W.E.H. Youssef, B. Bouallegue, A. Baganne, R. Tourki, Efficient large

numbers karatsuba-Ofman multiplier designs for embedded systems. Int. J. Electr. Comput. Energ.
Electron. Commun. Eng. 3(4), 815–824 (2009)

8. H. Parandeh-Afshar, A. Cevrero, P. Athanasopoulos, P. Brisk, Y. Leblebici, P. Ienne, A flexible DSP
block to enhance FPGA arithmetic performance. in Proceedings of International Conference on Field-
Programmable Technology (FPT), pp. 70–77. IEEE (2009)

9. H. Parandeh-Afshar, P. Ienne,Highly versatileDSPblocks for improvedFPGAarithmetic performance.
in Proceedings of International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 229–236. IEEE (2010)

10. B. Ronak, S.A. Fahmy, Mapping for maximum performance on FPGA DSP blocks. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 35(4), 573–585 (2016)

11. R. Warrier, L. Hao, W. Zhang, Reconfigurable DSP block design for dynamically reconfigurable
architecture. in Proceedings of International Symposium on Circuits and Systems (ISCAS), pp. 2551–
2554 (2014)

12. Xilinx Inc, UG369: Virtex-6 FPGA DSP48E1 Slice User Guide (2011)
13. S. Xu, S.A. Fahmy, I.V. McLoughlin, Square-rich fixed point polynomial evaluation on fpgas. in

Proceedings of International Symposium on Field-programmable Gate Arrays (FPGA), pp. 99–108.
ACM (2014)

14. W. Zhang, N.K. Jha, L. Shang, A hybrid nano/CMOS dynamically reconfigurable system—part I:
architecture. ACM J. Emerg. Technol. Comput. Syst. 5(4), 16 (2009)

15. W. Zhang, N.K. Jha, L. Shang, A hybrid nano/CMOS dynamically reconfigurable system—part II:
design optimization flow. ACM J. Emerg. Technol. Comput. Syst. 5(3), 13 (2009)

Author's personal copy


	Fracturable DSP Block for Multi-context Reconfigurable Architectures
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Architecture of Fracturable DSP Block
	3.1 Fracturable Baugh--Wooley (BW) Multiplier with HPM Reduction Tree
	3.1.1 Regular 16-Bit Mode
	3.1.2 Dual 8times8 Mode
	3.1.3 Single 8times8 Mode

	3.2 DSP Block Architecture
	3.3 Supporting Wider Multiplications
	3.4 DSP Interconnect
	3.5 Enhanced NanoMap

	4 Area/Power Overhead of Fracturable DSP Block and Performance Benefits
	5 Performance Results and Discussion
	6 Conclusion
	References




